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A Kalman Filter for BMTF

Initialize

Propagate
Update

Propagate

Update

Propagate

Update

Propagate

Update

Vertex Unconstrained
Measurement

Vertex Constrained
Measurement

● Sequential algorithm: (mathematically equivalent to a χ2 fit)
● Propagate track inwards from station to station and match with a stub
● Update track parameters and continue

● After reaching station 1  save measurement without vertex constraint�

● Propagate to vertex and update  vertex constrained measurement�

● Challenge for an FPGA implementation  �Matrix algebra
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ML IN THE TRIGGER
▸ (Variational) autoencoders for anomaly detection
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FIG. I. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models are derived
introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).

of the number of parallel processors. Since 19 is a prime
number, we choose to extend the input size to 20 before
passing it through the Conv2D layer. After padding, the
input is scaled by a batch normalization layer and then
processed by a stack of two CNN blocks, each including a
2D convolutional layer followed by a ReLU [55] activation
function. The first layer has 16 3 ⇥ 3 kernels, without
padding to ensure that pT, ⌘ and � inputs do not share
weights. The second layer has 32 3 ⇥ 1 kernels. Both
layers have no bias parameters and a stride set to one.
The output of the second CNN block is flattened and
passed to a DNN layer, with 8 neurons and no activation,
which represents the latent space. The decoder takes
this as input to a dense layer with 64 nodes and ReLU
activation, and reshapes it into a 2⇥ 1⇥ 32 table. The
following architecture mirrors the encoder architecture
with 2 CNN blocks with the same number of filters as in
the encoder and with ReLU activation. Both are followed
by an upsampling layer, in order to mimic the result of a
transposed convolutional layer.

Finally, one convolutional layer with a single filter and

no activation function is added. Its output is interpreted
as the AE reconstructed input. The CNN VAE is derived
from the AE, including the ~µ and ~� Gaussian sampling
in the latent space.
All models are implemented in TensorFlow, and

trained on the background dataset by minimizing a
customized mean squared error (MSE) loss with the
Adam [56] optimizer. In order to aid the network learn-
ing process, we use a dataset with standardized pT as a
target, so that all the quantities are O(1). To account
for physical boundaries of ⌘ and �, for those features a
re-scaled tanh activation is used in the loss computation.
In addition, the sum in the MSE loss is modified in order
to ignore the zero-padding entries of the input dataset
and the corresponding outputs. When training the VAE,
the loss is changed to:

L = (1� �)MSE(Output, Input) + �DKL(~µ,~�) , (1)

where MSE labels the reconstruction loss (also used in the
AE training), DKL is the Kullback-Leibler regularization

Nat. Mach. Intell. 4, 154 (2022)
8
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The inputs to the network are the top ten 
PUPPI candidates ranked by pT within each jet. 
The information for each particle candidate is: 
particle type (one-hot encoded; 8 indices), 
kinematic information (pT, η, φ scaled relative 
to jet; 3 indices), and vertex information (z-
position and transverse impact parameter with 
respect to the primary vertex; 2 indices).


The neural network architecture is based 
around two 1D convolutional layers which act 
as featurizers for inputs from each jet. The 
resulting features are flattened and passed 
through 3 dense layers to produce a single 
value between 0 and 1. Scores close to 1 
indicate jets that are likely to have originated 
from bottom quarks, while scores close to 0 
indicate jets that are likely to have originated 
from light quarks or gluons.
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▸ (Variational) autoencoders for anomaly detection
▸ 1D convolutional neural networks for b-tagging

4

In
pu

t ∈
 ℝ

57

BN Dense ∈ ℝ32 Dense ∈ ℝ16 Latent space ∈ ℝ3 Dense ∈ ℝ16 Dense ∈ ℝ32 Dense ∈ ℝ57 

ENCODER DECODER

Output:
Conv2d 4 (1,(3,3))

Block 3:
Dense (8)
Dense 1 (64)
ReLU
Reshape (2,1,32)

Block 1:
Conv2d (16,(3,3))  
ReLU 
AvPooling (3,1)  

ReLU

Block 2:
Conv2d 1 (32,(3,1))  
ReLU 
AvPooling (3,1)
Flatten (64)

Block 4:
Conv2d 2 (32,(3,1))  
ReLU 
UpSampling (3,1)
ZeroPad (0,0),(1,1)

Block 5:
Conv2d 3 (16,(3,1))  
ReLU 
UpSampling (3,1)
ZeroPad (1,0),(0,0)

Block 0:
Input 19x3x1
ZeroPadding (1,0)
BatchNorm

ReLU ReLU ReLU ReLU

FIG. I. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models are derived
introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).

of the number of parallel processors. Since 19 is a prime
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passing it through the Conv2D layer. After padding, the
input is scaled by a batch normalization layer and then
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this as input to a dense layer with 64 nodes and ReLU
activation, and reshapes it into a 2⇥ 1⇥ 32 table. The
following architecture mirrors the encoder architecture
with 2 CNN blocks with the same number of filters as in
the encoder and with ReLU activation. Both are followed
by an upsampling layer, in order to mimic the result of a
transposed convolutional layer.

Finally, one convolutional layer with a single filter and
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as the AE reconstructed input. The CNN VAE is derived
from the AE, including the ~µ and ~� Gaussian sampling
in the latent space.
All models are implemented in TensorFlow, and

trained on the background dataset by minimizing a
customized mean squared error (MSE) loss with the
Adam [56] optimizer. In order to aid the network learn-
ing process, we use a dataset with standardized pT as a
target, so that all the quantities are O(1). To account
for physical boundaries of ⌘ and �, for those features a
re-scaled tanh activation is used in the loss computation.
In addition, the sum in the MSE loss is modified in order
to ignore the zero-padding entries of the input dataset
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of the number of parallel processors. Since 19 is a prime
number, we choose to extend the input size to 20 before
passing it through the Conv2D layer. After padding, the
input is scaled by a batch normalization layer and then
processed by a stack of two CNN blocks, each including a
2D convolutional layer followed by a ReLU [55] activation
function. The first layer has 16 3 ⇥ 3 kernels, without
padding to ensure that pT, ⌘ and � inputs do not share
weights. The second layer has 32 3 ⇥ 1 kernels. Both
layers have no bias parameters and a stride set to one.
The output of the second CNN block is flattened and
passed to a DNN layer, with 8 neurons and no activation,
which represents the latent space. The decoder takes
this as input to a dense layer with 64 nodes and ReLU
activation, and reshapes it into a 2⇥ 1⇥ 32 table. The
following architecture mirrors the encoder architecture
with 2 CNN blocks with the same number of filters as in
the encoder and with ReLU activation. Both are followed
by an upsampling layer, in order to mimic the result of a
transposed convolutional layer.

Finally, one convolutional layer with a single filter and

no activation function is added. Its output is interpreted
as the AE reconstructed input. The CNN VAE is derived
from the AE, including the ~µ and ~� Gaussian sampling
in the latent space.
All models are implemented in TensorFlow, and

trained on the background dataset by minimizing a
customized mean squared error (MSE) loss with the
Adam [56] optimizer. In order to aid the network learn-
ing process, we use a dataset with standardized pT as a
target, so that all the quantities are O(1). To account
for physical boundaries of ⌘ and �, for those features a
re-scaled tanh activation is used in the loss computation.
In addition, the sum in the MSE loss is modified in order
to ignore the zero-padding entries of the input dataset
and the corresponding outputs. When training the VAE,
the loss is changed to:

L = (1� �)MSE(Output, Input) + �DKL(~µ,~�) , (1)

where MSE labels the reconstruction loss (also used in the
AE training), DKL is the Kullback-Leibler regularization
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teacher is an m-component ensemble, the component logits (z1, . . . , zm), where zi = fi(x, ✓i), are
combined to form the teacher logits: zt = log (

Pm
i=1 �(zi)/m). These combined logits correspond

to the predictive distribution of the ensemble model average. The experiments in the main text
consider m 2 {1, 3, 5}, and we include results up to m = 12 in Appendix B.2.1

3.1 Knowledge Distillation

Hinton et al. [22] proposed a simple approach to knowledge distillation. The student minimizes a
weighted combination of two objectives, Ls := ↵LNLL+(1�↵)LKD, where ↵ 2 [0, 1). Specifically,

LNLL(zs,y) := �
cX

j=1

yj log �j(zs), LKD(zs, zt) := �⌧2
cX

j=1

�j

⇣zt
⌧

⌘
log �j

⇣zs
⌧

⌘
. (1)

LNLL is the usual supervised cross-entropy between the student logits zs and the one-hot labels y.
Recalling that KL(p||q) =

P
j pj(log qj � log pj), we see that LNLL is equivalent (up to a constant)

to the KL from the empirical data distribution to the student predictive distribution (p̂s). LKD is
the added knowledge distillation term that encourages the student to match the teacher. It is the
cross-entropy between the teacher and student predictive distributions p̂t = �(zt) and p̂s = �(zs),
both scaled by a temperature hyperparameter ⌧ > 0. If ⌧ = 1 then LKD is similarly equivalent to the
KL from the teacher to the student, KL(p̂t||p̂s). Since we focus on distillation fidelity, we choose
↵ = 0 for all experiments in the main text to avoid any confounding from true labels, but we also
include a limited ablation of ↵ in Figure 14 in Appendix C.5 for the curious reader.

As ⌧ ! +1, rzsLKD(zs, zt) ⇡ zt � zs, and thus in the limit rzsLKD is approximately equivalent
to rzs ||zt � zs||22/2, assigning equal significance to every class logit, regardless of its contribution
to the predictive distribution. In other words ⌧ determines the “softness” of the teacher labels, which
in turn determines the allocation of student capacity. If the student is much smaller than the teacher,
the student capacity can be focused on matching the teacher’s top-k predictions, rather than matching
the full teacher distribution by choosing a moderate value (e.g. ⌧ = 4). In Appendix B.1 we include
further discussion on the interplay of teacher ensemble size, teacher network capacity, and distillation
temperature on the student labels.

The teacher and student often share at least some training data. It is also common to enlarge the
student training data in some way (e.g. incorporating unlabeled examples as in Ba and Caruana [2]).
When there is a possibility of confusion, we will refer to the student’s training data as the distillation
data to distinguish it from the teacher’s training data.

3.2 Metrics and Evaluation

To measure generalization, we report top-1 accuracy, negative log-likelihood (NLL) and expected
calibration error (ECE) [16]. To measure fidelity, we report the following:

Average Top-1 Agreement :=
1

n

nX

i=1

1{argmax
j

�j(zt,i) = argmax
j

�j(zs,i)}, (2)

Average Predictive KL :=
1

n

nX

i=1

KL (p̂t(y|xi) || p̂s(y|xi)) , (3)

Eqn. (2) is the average agreement between the student and teacher’s top-1 label. Eqn. (3) is the
average KL divergence from the predictive distribution of the teacher to that of the student, a measure
of fidelity sensitive to all of the labels.

While improvements in generalization metrics are relatively easy to understand, interpreting fidelity
metrics requires some care. For example, suppose we have three independent models: f1, f2, and f3
that respectively achieve 55%, 75%, and 95% test accuracy. f1 and f3 can agree on at most 60% of
points, whereas f2 and f3 agree on at least 70%, but it would obviously be incorrect to make any
claim about f2 being a better distillation of f3 since each model was trained completely independently.
To account for such confounding when evaluating the distillation of a student s from a teacher t, we
also evaluate another student s0 distilled through an identical procedure from an independent teacher.

1Code for all experiments can be found here: https://github.com/samuelstanton/gnosis.
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KL from the teacher to the student, KL(p̂t||p̂s). Since we focus on distillation fidelity, we choose
↵ = 0 for all experiments in the main text to avoid any confounding from true labels, but we also
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Eqn. (2) is the average agreement between the student and teacher’s top-1 label. Eqn. (3) is the
average KL divergence from the predictive distribution of the teacher to that of the student, a measure
of fidelity sensitive to all of the labels.
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Figure 1: Quantization mapping of real values to int8

3 Quantization Fundamentals

We focus on uniform integer quantization as it enables computing matrix multiplications and convolutions in the integer
domain, allowing the use of high throughput integer math pipelines. Uniform quantization can be divided in to two
steps. First, choose the range of the real numbers to be quantized, clamping the values outside this range. Second, map
the real values to integers representable by the bit-width of the quantized representation (round each mapped real value
to the closest integer value).

In this Section we will consider higher precision floating-point formats like fp16 and fp32 to be real numbers for
the purpose of discussion. Enabling integer operations in a pre-trained floating-point neural network requires two
fundamental operations:

Quantize: convert a real number to a quantized integer representation (e.g. from fp32 to int8).

Dequantize: convert a number from quantized integer representation to a real number (e.g. from int32 to fp16).

We will first define the quantize and dequantize operations in Section 3.1 and discuss their implications in neural
network quantization in Sections 3.2 and 3.3. Then we will discuss how the real ranges are chosen in Section 3.4.

3.1 Range Mapping

Let [�,↵] be the range of representable real values chosen for quantization and b be the bit-width of the signed integer
representation. Uniform quantization transforms the input value x 2 [�,↵] to lie within [�2b�1, 2b�1 � 1], where
inputs outside the range are clipped to the nearest bound. Since we are considering only uniform transformations,
there are only two choices for the transformation function: f(x) = s · x+ z and its special case f(x) = s · x, where
x, s, z 2 R. In this paper we refer to these two choices as affine and scale, respectively.

3.1.1 Affine Quantization

Affine quantization maps a real value x 2 R to a b-bit signed integer xq 2 {�2b�1,�2b�1 + 1, . . . , 2b�1 � 1}.
Equations 1 and 2 define affine transformation function, f(x) = s · x+ z:

s =
2b � 1

↵� �
(1)

z = � round(� · s)� 2b�1 (2)

where s is the scale factor and z is the zero-point - the integer value to which the real value zero is mapped. In the 8-bit
case, s = 255

↵�� and z = �round(� · s)� 128. Note that z is rounded to an integer value so that the real value of zero
is exactly representable. This will result in a slight adjustment to the real representable range [�,↵] [20].
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▸ Fake quantization: using 32-bit floating-point under the hood

▸ Straight-through estimator: during backpropagation, ignore quantization 
operation (treat as identity)

QUANTIZATION-AWARE TRAINING: HOW DOES IT WORK?

© Amir Gholami, UCB
Berkeley  EE290, 2021Fake Quantization!

26

Fake Quantization:

Integer-only 
Quantization

INT4

INT4

Weights

X

FP32 
Multiply Accumulate

+ INT4

FP32 -> INT4
Requantization

Activations

ai4 = Int(
afp32

Sa
)

<latexit sha1_base64="c0GUhsgkmBlVAM3gHV6Rcgx4VpY="></latexit>

W fp32 = (Sw,W
i4)fp32

<latexit sha1_base64="XZA5CnSR3Z7dtFJUGdSs50CYYqo="></latexit>

hfp32 = (Sh, h
i4)fp32

<latexit sha1_base64="L99LNuigFq4N4KCaIV+UiPl+xAw="></latexit>

afp32 = W fp32hfp32

<latexit sha1_base64="pl1wSmrzwQ3x9LoM/SV9bzwyjIg="></latexit>

<latexit sha1_base64="h7BWYpGPkj4tjJQqDyLE1x4cGbY="></latexit>

Dyadic Number:
a

2b

D Goldberg · 1991

INT4

INT4

Weights

X

INT32 
Multiply Accumulate

+ INT4

INT32 -> INT4
Dyadic Rescaling

Activations

(Sw,W
i4)

<latexit sha1_base64="Zu3W1eSNbsDDuCL0AqlXpdPA5Bk=">AAACSHicZVDLTttAFB2nLYWUR0K7axejRkiAUGRXqcoStV2wqQBBCBIO0fXkJowYj62Z65TUyr+whU/hD/oX3VXdMU4s0cCRRjpz7kPnnihV0pLv//YqL16+Wni9uFR9s7yyularr5/aJDMC2yJRiTmLwKKSGtskSeFZahDiSGEnuvpW1DsjNFYm+oTGKXZjGGo5kALISb3au83j3s8d3rnIQ5J6zGVrslXt1Rp+05+CPydBSRqsxGGv7n0I+4nIYtQkFFh7HvgpdXMwJIXCSTXMLKYgrmCI545qiNF286n9Cd9wSp8PEuOeJj5V/5/IIbZ2HEeuMwa6tE9rhfhY+47OgcEf7neQogFKzHYeghnGcD1xjobhTsGq855osNvNpU4zQi1mlgaZ4pTwIjXelwYFqbEjIIx0V3FxCQYEuWznNvVHMrXlfdezA4s8g6fpPSenn5pBq/n5qNXY+1omu8jes49skwXsC9tj++yQtZlgv9gNu2V33r33x/vr/Zu1Vrxy5i2bQ6XyAIwCsI0=</latexit>

(Sh, h
i4)

<latexit sha1_base64="mO0NE74aGtaK7dJt0zUlyAgyG7w="></latexit>

ai4 = Int(
SwSh

Sa
ai32)

<latexit sha1_base64="iAcfzp8AOe6T/If5JT6v/EJOgNA="></latexit>

ai32 = W i4hi4

<latexit sha1_base64="A0NMURXpD+ccBqqulzOJxdT36jk="></latexit>

SwSh

Sa
=

↵

2�

<latexit sha1_base64="uOOhnlUQA2GKMwyJfOyhqLxvla4=">AAACYHicZVBNT9tAEN2YfqTpB0l7oxxWjZCqCkU2ooJLJVQ49FJBRQNIOLXGm3GyYm2vdsdAZPlP8Gt6bf9Fr/wS1oklGhhptW/fzKzee7FW0pLv/2t5K0+ePnveftF5+er1m9Vu7+2JzQsjcChylZuzGCwqmeGQJCk80wYhjRWexhf7df/0Eo2VefaTZhpHKUwymUgB5KiouxkmBkR5HF0dR9PK3VDxL3xBhqD0FKpy61cYI0HVibp9f+DPiz8GQQP6rKmjqNdaD8e5KFLMSCiw9jzwNY1KMCSFwqoTFhY1iAuY4LmDGaRoR+XcVsU3HDPmSW7cyYjP2f83SkitnaWxm0yBpvZhrybvewfoFBj87l6HGg1Qbj45i2aSwnXlFE3CzRp1ljVRsjsqZaYLwkwsJCWF4pTzOk0+lgYFqZkDIIx0rriYgguPXOZLP40vpbaNv+uFwTrP4GF6j8HJ1iDYHnz+sd3f+9ok22bv2Qf2kQVsh+2xb+yIDZlgN+w3+8P+tm69trfq9RajXqvZeceWylu7A1pVuL0=</latexit>

Z. Yao*, Z. Dong*, Z. Zheng*, A. Gholami*, E. Tan, J. Li, L. Yuan, Q. Huang, Y. Wang, M. W. Mahoney, K. Keutzer, 
HAWQ-V3: Dyadic Neural Network Quantization in Mixed Precision, arxiv:2011.10680, 2020. 

© Amir Gholami, UCB
Berkeley  EE290, 2021Fake Quantization!

26

Fake Quantization:

Integer-only 
Quantization

INT4

INT4

Weights

X

FP32 
Multiply Accumulate

+ INT4

FP32 -> INT4
Requantization

Activations

ai4 = Int(
afp32

Sa
)

<latexit sha1_base64="c0GUhsgkmBlVAM3gHV6Rcgx4VpY="></latexit>

W fp32 = (Sw,W
i4)fp32

<latexit sha1_base64="XZA5CnSR3Z7dtFJUGdSs50CYYqo="></latexit>

hfp32 = (Sh, h
i4)fp32

<latexit sha1_base64="L99LNuigFq4N4KCaIV+UiPl+xAw="></latexit>

afp32 = W fp32hfp32

<latexit sha1_base64="pl1wSmrzwQ3x9LoM/SV9bzwyjIg="></latexit>

<latexit sha1_base64="h7BWYpGPkj4tjJQqDyLE1x4cGbY="></latexit>

Dyadic Number:
a

2b

D Goldberg · 1991

INT4

INT4

Weights

X

INT32 
Multiply Accumulate

+ INT4

INT32 -> INT4
Dyadic Rescaling

Activations

(Sw,W
i4)

<latexit sha1_base64="Zu3W1eSNbsDDuCL0AqlXpdPA5Bk="></latexit>

(Sh, h
i4)

<latexit sha1_base64="mO0NE74aGtaK7dJt0zUlyAgyG7w="></latexit>

ai4 = Int(
SwSh

Sa
ai32)

<latexit sha1_base64="iAcfzp8AOe6T/If5JT6v/EJOgNA="></latexit>

ai32 = W i4hi4

<latexit sha1_base64="A0NMURXpD+ccBqqulzOJxdT36jk="></latexit>

SwSh

Sa
=

↵

2�

<latexit sha1_base64="uOOhnlUQA2GKMwyJfOyhqLxvla4="></latexit>

Z. Yao*, Z. Dong*, Z. Zheng*, A. Gholami*, E. Tan, J. Li, L. Yuan, Q. Huang, Y. Wang, M. W. Mahoney, K. Keutzer, 
HAWQ-V3: Dyadic Neural Network Quantization in Mixed Precision, arxiv:2011.10680, 2020. 

© Amir Gholami, UCB
Berkeley  EE290, 2021Fake Quantization!

26

Fake Quantization:

Integer-only 
Quantization

INT4

INT4

Weights

X

FP32 
Multiply Accumulate

+ INT4

FP32 -> INT4
Requantization

Activations

ai4 = Int(
afp32

Sa
)

<latexit sha1_base64="c0GUhsgkmBlVAM3gHV6Rcgx4VpY="></latexit>

W fp32 = (Sw,W
i4)fp32

<latexit sha1_base64="XZA5CnSR3Z7dtFJUGdSs50CYYqo="></latexit>

hfp32 = (Sh, h
i4)fp32

<latexit sha1_base64="L99LNuigFq4N4KCaIV+UiPl+xAw="></latexit>

afp32 = W fp32hfp32

<latexit sha1_base64="pl1wSmrzwQ3x9LoM/SV9bzwyjIg=">AAACdXichVFNTxsxEHW2pYX0K4UjQrKaFqGqCrtpEFyQEHDopWoqNQSJTaNZZzax8HpX9mxFtNr/x1/gT3Clhx7wJpHKx4GRbD2/N2M/z0SZkpZ8/6rmPXu+9OLl8kr91es3b9813q+e2DQ3AnsiVak5jcCikhp7JEnhaWYQkkhhPzo/qvT+HzRWpvoXTTMcJDDWMpYCyFHDRgS/i5Dwgtwu9TSc3VgYHJU8zr62y3K//0TC5Am9Pmw0/ZY/C/4YBAvQZIvoDhv/wlEq8gQ1CQXWngV+RoMCDEmhsKyHucUMxDmM8cxBDQnaQTF7uOSfHDPicWrc0sRn7N2KAhJrp0nkMhOgiX2oVeR/7RidA4Pf3elHhgYoNZ+LEMw4gYvSORqHXypUv++J4r1BIXWWE2oxtxTnilPKqxHwkTQoSE0dAGGk+xUXEzAgyA2qalfwsDmPwUm7FXRaOz87zYPDReOW2Tr7wLZYwHbZAfvGuqzHBLtk1+yG/a3deBveR29znurVFjVr7F5427erQsSq</latexit>

<latexit sha1_base64="h7BWYpGPkj4tjJQqDyLE1x4cGbY="></latexit>

Dyadic Number:
a

2b

D Goldberg · 1991

INT4

INT4

Weights

X

INT32 
Multiply Accumulate

+ INT4

INT32 -> INT4
Dyadic Rescaling

Activations

(Sw,W
i4)

<latexit sha1_base64="Zu3W1eSNbsDDuCL0AqlXpdPA5Bk="></latexit>

(Sh, h
i4)

<latexit sha1_base64="mO0NE74aGtaK7dJt0zUlyAgyG7w=">AAACSHicZVBdSxtBFJ1NWz/SqrH1zT4MDQUrEnYl0j5K9cEXUWmjgpuGu5ObZMjs7DJzV0yX/Je+6k/xH/gvfBPfnE0WbPTAwJlzPzj3RKmSlnz/zqu8eftubn5hsfr+w9LySm3146lNMiOwJRKVmPMILCqpsUWSFJ6nBiGOFJ5Fw72ifnaJxspE/6ZRiu0Y+lr2pAByUqe2tvGrM9jigz95SFKPuGyOv1U7tbrf8Cfgr0lQkjorcdxZ9T6H3URkMWoSCqy9CPyU2jkYkkLhuBpmFlMQQ+jjhaMaYrTtfGJ/zL86pct7iXFPE5+o/0/kEFs7iiPXGQMN7MtaIT7X9tE5MHjofkcpGqDEbOYhmH4MV2PnqB9uFaw664l6P9q51GlGqMXUUi9TnBJepMa70qAgNXIEhJHuKi4GYECQy3ZmU/dSpra872p6YJFn8DK91+R0uxE0GzsnzfruzzLZBbbOvrANFrDvbJcdsGPWYoL9Zf/YNbvxbr1778F7nLZWvHLmE5tBpfIEj42wjw==</latexit>

ai4 = Int(
SwSh

Sa
ai32)

<latexit sha1_base64="iAcfzp8AOe6T/If5JT6v/EJOgNA="></latexit>

ai32 = W i4hi4

<latexit sha1_base64="A0NMURXpD+ccBqqulzOJxdT36jk="></latexit>

SwSh

Sa
=

↵

2�

<latexit sha1_base64="uOOhnlUQA2GKMwyJfOyhqLxvla4="></latexit>

Z. Yao*, Z. Dong*, Z. Zheng*, A. Gholami*, E. Tan, J. Li, L. Yuan, Q. Huang, Y. Wang, M. W. Mahoney, K. Keutzer, 
HAWQ-V3: Dyadic Neural Network Quantization in Mixed Precision, arxiv:2011.10680, 2020. 

17



QUANTIZATION-AWARE TRAINING: RESULTS 18arXiv:2006.10159
Xilinx VU9P

https://arxiv.org/abs/2006.10159


QUANTIZATION-AWARE TRAINING: RESULTS
▸ Full performance with 6 

bits instead of 14 bits 

18arXiv:2006.10159
Xilinx VU9P

https://arxiv.org/abs/2006.10159


QUANTIZATION-AWARE TRAINING: RESULTS
▸ Full performance with 6 

bits instead of 14 bits 

▸ Much smaller fraction of 
resources

18arXiv:2006.10159
Xilinx VU9P

https://arxiv.org/abs/2006.10159


QUANTIZATION-AWARE TRAINING: RESULTS
▸ Full performance with 6 

bits instead of 14 bits 

▸ Much smaller fraction of 
resources

▸ Area & power scale 
quadratically with bit width

18arXiv:2006.10159
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ric cannot comprehensively reflect the performance of deep
learning (DL) accelerators. They investigate the impact of
various frequently-used hardware optimizations on a typi-
cal DL accelerator and quantify their effects on accuracy
and throughout under-representative DL inference workloads.
Their major conclusion is that high hardware throughput is
not necessarily highly correlated with the end-to-end high
inference throughput of data feeding between host CPUs and
AI accelerators. Finally, Baskin et al. [3] propose to gener-
alize FLOPS and OPS by taking into account the bitwidth
of each operand as well as the operation type. The resulting
metric, named BOPS (binary operations), allows area estima-
tion of quantized neural networks including cases of mixed
quantization.

The aforementioned metrics do not provide any insight on
the amount of silicon resources needed to implement them.
Our work, accordingly, functions as a bridge between the
CNN workload complexity and the real power/area estima-
tion.

3. COMPLEXITY METRIC
In this section, we describe our hardware-aware complexity

metric (HCM), which takes into account the CNN topology,
and define the design rules of efficient implementation of
quantized neural networks. The HCM metric assesses two
elements: the computation complexity, which quantifies the
hardware resources needed to implement the CNN on silicon,
and the communication complexity, which defines the mem-
ory access pattern and bandwidth. We describe the changes
resulting from switching from a floating-point representation
to a fixed-point one, and then present our computation and
communication complexity metrics. All results for the fixed-
point multiplication presented in this section are based on the
Synopsys standard library multiplier using TSMC’s 28nm
process.

3.1 The impact of quantization on hardware
implementation

Currently, the most common representation of weights and
activations for training and inference of CNNs is either 32-
bit or 16-bit floating-point numbers. The fixed-point MAC
operation, however, requires significantly fewer hardware
resources, even for the same input bitwidth. To illustrate this
fact, we generated two multipliers: one for 32-bit floating-
point1 and the other for 32-bit fixed-point operands. The
results in Table 1 show that a fixed-point multiplier uses ap-
proximately eight time less area, gates, and power than the
floating-point counterpart. Next, we generated a convolution
with a k ⇥ k kernel, a basic operation in CNNs consisting of
k2 MAC operations per output value. After switching from
floating-point to fixed-point, we explored the area of a single
processing engine (PE) with variable bitwidth. Note that ac-
cumulator size depends on the network architecture: the maxi-
mal bitwidth of the output value is bwba+ log2(k2)+ log2(n),
where n is number of input features. Since the extreme values
are very rare, however, it is often possible to reduce the accu-
mulator width without harming the accuracy of the network
[6].

1FPU100 from https://opencores.org/projects/fpu100

0 2 4 6 8 10 12 14 16
Bitwidth

0

1000

2000

3000

4000

A
re

a

Quadratic fit

PE area

Figure 2: Area (A) vs. bitwidth (b) for a 3 ⇥ 3 PE with a
single input and output channel. All weights and activations
use the same bitwidth and the accumulator width is 4 bit
larger, which is enough to store the result. The quadratic fit
is A = 12.39b2 + 86.07b � 14.02 with goodness of fit R2 =
0.9999877.

Fig. 2 shows the silicon area of the PE as a function of
the bitwidth. We performed a polynomial regression and ob-
served a quadratic dependence of the PE area on the bitwidth,
with the coefficient of determination R2 = 0.9999877. This
nonlinear dependency demonstrates that quantization impact
a network hardware resources is quadratic: reducing bitwidth
of the operands by half reduces area and, by proxy, power ap-
proximately by a factor of four (contrary to what is assumed
by, e.g., Mishra et al. [20]).

3.2 Computation
We now present the BOPS metric defined in Baskin et al.

[3] as our computation complexity metric. In particular, we
show that BOPS can be used as an estimator for the area
of the accelerator. The area, in turn, is found to be linearly
related to the power in case of the PEs.

The computation complexity metric describes the amount
of arithmetic “work” needed to calculate the entire network
or a single layer. BOPS is defined as the number of bit opera-
tions required to perform the calculation: the multiplication
of n-bit number by m-bit number requires n ·m bit operations,
while addition requires max(n,m) bit operations. In partic-
ular, Baskin et al. [3] show that a k ⇥ k convolutional layer
with ba-bit activations and bw-bit weights requires

BOPS = mnk2�babw +ba +bw + log2(nk2)
�

(1)

bit operations, where n and m are, respectively, the number
of input and output features of the layer. The formula takes
into account the width of the accumulator required to accom-
modate the intermediate calculations, which depends on n.
The BOPS of an entire network is calculated as a sum of
the BOPS of the individual layers. Creating larger accelera-
tors that can process more layers in parallel involves simply
replicating the same individual PE design.

In Fig. 3, we calculated BOPS values for the PEs from
Fig. 2 and plotted them against the area. We conclude that
for a single PE with variable bitwidth, BOPS can be used to
predict the PE area with high accuracy.
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PRUNING + QUANTIZATION-AWARE TRAINING
▸ Quantization-aware pruning (QAP): iterative 

pruning can further reduce the hardware 
computational complexity of a quantized 
model 

▸ After QAP, the 6-bit, 80% pruned model 
achieves a factor of 50 reduction in BOPs 
compared to the 32-bit, unpruned model 

▸ Study using Brevitas
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▸ Register transfer-level (RTL)  
code is “synthesized” into gates

FPGAs

EFFICIENCY

Control 
Unit 
(CU)

Registers

Arithmetic 
Logic Unit 

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

PROGRAMMING HARDWARE (FPGAS) 22

module adder(  
    input  wire [4:0] a,  
    input  wire [4:0] b,  
    output wire [4:0] y  
);  
    assign y = a + b;  
 
endmodule

▸ Say you want to program an “adder” function on an FPGA

For more: https://youtu.be/iHg0mmIg0UU

https://youtu.be/iHg0mmIg0UU
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High-Level Synthesis

▸ What if instead we specify an AI model 



▸ hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware
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▸ hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware
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hls4ml v0.7.0 
coming this week!
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▸ FINN (NNs): https://finn.readthedocs.io/en/latest/ 

▸ Confier (BDTs): https://github.com/thesps/conifer 

▸ fwXMachina (BDTs): http://fwx.pitt.edu/ 

▸ FlowGNN: https://github.com/sharc-lab/flowgnn
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More specifically, the GNN computation flow has the fol-
lowing stages, as demonstrated in Fig. 2:
Message Passing (Gather). In the gather phase, a.k.a. aggre-
gation, of a certain node n1, the messages from its neighbors
obtained in the previous layer are retrieved from a message
buffer. The messages are then aggregated in a permutation-
invariant manner, denoted by A(·) (e.g., sum, max, mean, std.
dev.). In advanced GNNs such as PNA, multiple aggregators
are used with learnable weights and scaled based on the degree
of the target node. The aggregated message is denoted by m

l
1.

Node Transformation. After aggregation, m
l
1 is processed

together with node n1’s current node embedding, denoted by
x
l
1, via a node transformation function �(·). This function,

with inputs m
l
1 and x

l
1, might be an identity, fully-connected

layer, weighted sum, or an MLP. �(·) produces a new node
embedding of n1, denoted by x

l+1
1 , and applies the update.

Message Passing (Scatter). After node transformation is the
scatter phase of message passing. The new node embedding
x
l+1
1 will be transformed by a message transformation function

�(·), usually together with an edge embedding e
l+1
src,dest, to

generate the node’s outgoing messages. Messages will be
dispatched to all neighbors, which will eventually be collected
by the gather stage of the next layer.
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Fig. 4. Different strategies of pipelining of node transformation (NT) and
message passing (MP). The proposed FlowGNN pipeline in (d) explores
node/edge level parallelism and can pipeline NT and MP within one node.

A complete GNN model may consist of multiple layers,
each with message passing and node transformation steps. For
graph-level tasks, a global pooling layer is needed, possibly
followed by MLP layers for final prediction.

C. Baseline Dataflow Architecture

To explicitly support the message passing mechanism, we
first propose the baseline dataflow architecture, shown in
Fig. 3(a). It has two major processing components: one Node
Transformation (NT) unit (yellow block), and one Message

5
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Can be done on the FPGA!

At each node, compute

ML framework: 
 

Loss function: Huber loss [Wikipedia]
 

Activation function: ReLU
 

Batch normalization: applied right after the 

        input layer and in each hidden layer

Training dataset: 2M muons
 

Testing dataset: 1M muons

pT assignment with NN

https://cds.cern.ch/record/2714892
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▸ NN measures muon momentum
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Figure 3.33: Left: endcap trigger rate comparison of the Phase-1 EMTF and the Phase-2
EMTF++ algorithms as a function of pT threshold for events with 200 average pileup. Right:
Trigger rate comparison as a function of PU for a pT > 20 GeV threshold.

The same 6 h zones are retained for a total of 54 patterns per 0.5-degree in f, as for the prompt
muon patterns. Figure 3.31 (right) shows these patterns.

The TP information in the stations from stubs that satisfy a displaced pattern are input to a NN
that in this case has been trained to perform a regression that returns simultaneously values for
1/pT and d0 of displaced muons. The NN configuration used is the same as that for prompt
muons, using 3 hidden layers with 30/25/20 nodes each. Batch normalization is inserted after
each layer, including the input layer. A total of 23 inputs are used in the NN, these are:

• 6 Df quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 6 Dq quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 4 bend angles: set to zero if no CSC stub is found and only RPC stub is used
• For ME1 only: 1 bit for front or back chambers and 1 bit for inner or outer h ring
• 1 track q taken from stub coordinate in ME2, ME3, ME4 (in this priority)
• 4 RPC bits indicating if ME or RE stub was used in each station (S1, S2, S3, S4)

At the time of this writing, information from the new Phase-2 detectors (GE1/1, GE2/1, ME0,
iRPC) has not been incorporated into the study, and neither has the more precise CSC bend
information described above. As such, this study is geared towards possible implementation of
this algorithm during Run-3. An update to incorporate new Phase-2 detector information is in
progress. The already positive conclusions on triggering on standalone displaced muons in the
endcap with only the Phase-1 detectors, as shown below, is expected to improve significantly
when all Phase-2 information is included.

Figure 3.34 shows, for events with single muons and no pileup, the q/pT and the d0 resolutions
as determined by the NN estimate of these quantities. The pT resolution is about 60%, which
is large compared to the 20% resolution obtained from EMTF++ for prompt muons. A bias
towards underestimating the pT can be observed. However, the d0 resolution is very good,
⇠ 5 cm. Figure 3.35 shows the trigger rates of the displaced muon algorithm for PU 200 events.
In order to keep the rates at approximately the same 10 kHz level as those from prompt muons,
reasonable L1 thresholds of, for example, pT > 20 GeV and |d0| > 20 cm can be applied.

▸ NN measures muon momentum
▸ 3× reduction in the trigger rate for NN!

CMS-TDR-021
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Can be done on the FPGA!

At each node, compute

ML framework: 
 

Loss function: Huber loss [Wikipedia]
 

Activation function: ReLU
 

Batch normalization: applied right after the 

        input layer and in each hidden layer

Training dataset: 2M muons
 

Testing dataset: 1M muons

pT assignment with NN
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Figure 3.33: Left: endcap trigger rate comparison of the Phase-1 EMTF and the Phase-2
EMTF++ algorithms as a function of pT threshold for events with 200 average pileup. Right:
Trigger rate comparison as a function of PU for a pT > 20 GeV threshold.

The same 6 h zones are retained for a total of 54 patterns per 0.5-degree in f, as for the prompt
muon patterns. Figure 3.31 (right) shows these patterns.

The TP information in the stations from stubs that satisfy a displaced pattern are input to a NN
that in this case has been trained to perform a regression that returns simultaneously values for
1/pT and d0 of displaced muons. The NN configuration used is the same as that for prompt
muons, using 3 hidden layers with 30/25/20 nodes each. Batch normalization is inserted after
each layer, including the input layer. A total of 23 inputs are used in the NN, these are:

• 6 Df quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 6 Dq quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 4 bend angles: set to zero if no CSC stub is found and only RPC stub is used
• For ME1 only: 1 bit for front or back chambers and 1 bit for inner or outer h ring
• 1 track q taken from stub coordinate in ME2, ME3, ME4 (in this priority)
• 4 RPC bits indicating if ME or RE stub was used in each station (S1, S2, S3, S4)

At the time of this writing, information from the new Phase-2 detectors (GE1/1, GE2/1, ME0,
iRPC) has not been incorporated into the study, and neither has the more precise CSC bend
information described above. As such, this study is geared towards possible implementation of
this algorithm during Run-3. An update to incorporate new Phase-2 detector information is in
progress. The already positive conclusions on triggering on standalone displaced muons in the
endcap with only the Phase-1 detectors, as shown below, is expected to improve significantly
when all Phase-2 information is included.

Figure 3.34 shows, for events with single muons and no pileup, the q/pT and the d0 resolutions
as determined by the NN estimate of these quantities. The pT resolution is about 60%, which
is large compared to the 20% resolution obtained from EMTF++ for prompt muons. A bias
towards underestimating the pT can be observed. However, the d0 resolution is very good,
⇠ 5 cm. Figure 3.35 shows the trigger rates of the displaced muon algorithm for PU 200 events.
In order to keep the rates at approximately the same 10 kHz level as those from prompt muons,
reasonable L1 thresholds of, for example, pT > 20 GeV and |d0| > 20 cm can be applied.

▸ NN measures muon momentum
▸ 3× reduction in the trigger rate for NN!

▸ Fits within L1 trigger latency (240 ns!) and 
FPGA resource requirements (less then 30%)

CMS-TDR-021

Dec 8, 2019 10

Can be done on the FPGA!

At each node, compute

ML framework: 
 

Loss function: Huber loss [Wikipedia]
 

Activation function: ReLU
 

Batch normalization: applied right after the 

        input layer and in each hidden layer

Training dataset: 2M muons
 

Testing dataset: 1M muons

pT assignment with NN

�1

Dense Network 
23 ➜ 30 ➜ 25 ➜ 20  

➜ momentum & classifier

Inference time: 280 ns 
Throughput: 104 Gb/s

AI circuit for ultrafast inference on FPGA

240 

https://cds.cern.ch/record/2714892
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▸ Extends idea to measure muon  
displacement as well as pT 

▸ Stay tuned for Run 3 results

CMS-PRF-21-001

Dec 8, 2019 15

Displaced EMTF++: NN
● In order to deploy during Run-3, displaced NN is trained with only inputs that 

are available in the current EMTF Ermware.

– Reduced to 23 features (CSC/RPC only)

● CSC ф and bend are the not the improved version as used for Phase-2 prompt NN.

– 4 stations  6 possible pairs: → 1-2, 1-3, 1-4, 2-3, 2-4, 3-4

● RPC is subbed in if CSC is not found in a given station/chamber.

– Expect improvements when Phase-2 trigger primitives are added in the future.

2 regression outputs:

 –  q/pT (without vertex constraint)

 –  d0
 

Loss function is the combination:

 
where α is an adjustable scale factor
 

Training muons: pT > 2 GeV, |d0| < 120 cm
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Figure 136: EMTF trigger efficiencies for prompt and displaced algorithms for L1 pT > 10 GeV
with respect to muon track dXY obtained using a displaced muon gun sample. The solid stars
show displaced NN performance while hollow squares show the prompt BDT performance.
The different colors show different h regions: 1.2 < |h| < 1.6 (black), 1.6 < |h| < 2.1 (red), and
2.1 < |h| < 2.5 (blue). The displaced algorithm shows efficiencies above 80% for 1.2 < |h| < 1.6
for up to 100 cm displacements, while efficiencies for 1.6 < |h| < 2.1 and 2.1 < |h| < 2.5 at
60 cm displacement are around 20% and 5% respectively.

of the L1T system has allowed for the addition of a µGT test crate containing the same hard-4215

ware to be added to further extend the Global Trigger capabilities. It will be used for testing4216

and development purposes, for example, to test new or experimental trigger menus, or to test4217

Phase-2 algorithms using ML or autoencoding, as described in the Phase-2 L1T TDR [212]. It4218

receives the same optical inputs as the production crate from a passive optical splitter panel.4219

For Run 3, this crate has been included as an optional component into the CMS data acquisition4220

system. While the test crate does not issue triggers itself, for events triggered by the produc-4221

tion crate, the full test crate data (inputs and results of calculations) is available in the CMS4222

data stream for offline analysis. The production and test crates are shown in Fig. 137.4223

By running the test crate with the same firmware, and thus the same trigger algorithms, as the4224

production crate, it is possible to carry out consistency and hardware checks. More importantly,4225

one can also run with different firmware in the test crate. This will allow trigger developers4226

to test new trigger menus, which consist of sets of all Global Trigger algorithms running in4227

parallel, with actual data. During normal data taking, a heavily prescaled stream of zero bias4228

data is included, where the only trigger requirement is that the bunches for that crossing are4229

filled. This makes it possible to investigate the performance of any new triggers in the test crate4230

menu. A test crate algorithm that is more restrictive than a specific algorithm in the production4231

system can also be studied by using the latter algorithm as a reference, thus benefiting from a4232

larger data sample. The fact that the test crate can be included in data acquisition during normal4233

running at no additional cost means that large amounts of realistic data can be collected, thus4234

allowing for accurate tests even of very restrictive algorithms that will only rarely provide a4235

trigger. By normalizing the offline data to the number of zero bias triggers taken or by recording4236

the online monitoring data, one can also check the total trigger rate of a new menu. This is very4237

useful, since it is not trivial to accurately estimate the total menu rate offline using the rate of4238

individual algorithms, since multiple algorithms can fire the same event simultaneously. This4239
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The blue line is the b-tag NN used in 
these studies, while the orange line is 
a more complex architecture that 
better mimics offline algorithms for b-
tagging by using a gated recurrent 
unit (GRU) but is too large to be run 
in the Level-1 Trigger environment.
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APPLICATION: B-TAGGING @ L1 29CMS-DP-2022-021

3

The inputs to the network are the top ten 
PUPPI candidates ranked by pT within each jet. 
The information for each particle candidate is: 
particle type (one-hot encoded; 8 indices), 
kinematic information (pT, η, φ scaled relative 
to jet; 3 indices), and vertex information (z-
position and transverse impact parameter with 
respect to the primary vertex; 2 indices).


The neural network architecture is based 
around two 1D convolutional layers which act 
as featurizers for inputs from each jet. The 
resulting features are flattened and passed 
through 3 dense layers to produce a single 
value between 0 and 1. Scores close to 1 
indicate jets that are likely to have originated 
from bottom quarks, while scores close to 0 
indicate jets that are likely to have originated 
from light quarks or gluons.

pa
rti

cle
 0

pa
rti

cle
 1

pa
rti

cle
 2

pa
rti

cle
 9

.  .  .

(6 features/particle)

(20 features/particle)

(5 features/particle)
(50 features)

(20 features)

(10 features)

(1 feature)

b-tag score

Pointwise convolution

(per particle dense layer)

Dense layer

▸ Upgraded HL-LHC level-1 track trigger information enables b-tagging with a 
neural network to improve the  search 
▸ Input features for 10 particles within each jet: particle type, momentum, and 

vertex information

HH → 4b
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We observe that the trigger combination 
with the b-tag NN trigger increases the 
efficiency for events with low mHH by up to a 
factor of 1.25 over the modified 
QuadJet+HT or Jets+Muon triggers.
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The inputs to the network are the top ten 
PUPPI candidates ranked by pT within each jet. 
The information for each particle candidate is: 
particle type (one-hot encoded; 8 indices), 
kinematic information (pT, η, φ scaled relative 
to jet; 3 indices), and vertex information (z-
position and transverse impact parameter with 
respect to the primary vertex; 2 indices).


The neural network architecture is based 
around two 1D convolutional layers which act 
as featurizers for inputs from each jet. The 
resulting features are flattened and passed 
through 3 dense layers to produce a single 
value between 0 and 1. Scores close to 1 
indicate jets that are likely to have originated 
from bottom quarks, while scores close to 0 
indicate jets that are likely to have originated 
from light quarks or gluons.
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neural network to improve the  search 
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mHH for same rate!
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The inputs to the network are the top ten 
PUPPI candidates ranked by pT within each jet. 
The information for each particle candidate is: 
particle type (one-hot encoded; 8 indices), 
kinematic information (pT, η, φ scaled relative 
to jet; 3 indices), and vertex information (z-
position and transverse impact parameter with 
respect to the primary vertex; 2 indices).


The neural network architecture is based 
around two 1D convolutional layers which act 
as featurizers for inputs from each jet. The 
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AUTOENCODERS FOR ANOMALY DETECT ION

Using Autoencoders for anomaly detection 
Encode input in smaller dimensional space 
Train on typical LHC background 
Anomalous data will have higher loss  
Calculating the loss requires to store the input until the 
output is computed

3.2 Baseline performance

The models described in the previous section are trained with floating point precision on an NVIDIA RTX2080 GPU.
We refer to these models as baseline (B). Figures 4 and 5 shows the distribution of the anomaly-detection scores
considered in this paper (IO AD for the AE models, Rz and DKL(ADs for the VAE models). For completeness, results
obtained from the IO AD score of the VAE models are also shown.

Figure 4: Distribution of four anomaly detection scores (IO AD for AE and VAE models, Rzand DKLADs for the VAE
models) for the DNN model, for the SM cocktail and the four new physics benchmark models.

The model performance is assessed using the four new physics benchmark models. The receiver operating characteristic
(ROC) curves in Fig. 6 show the dependence of the true positive rate (TPR) as a function of the false positive rate (FPR),
computing by changing the lower threshold applied on the different anomaly scores. We further quantify the anomaly
detection performance quoting the area under the ROC curve (AUC) and the TPR corresponding to to a working point
of SM false positive rate "SM = 10

�5 (see Table 1), which corresponds to the average of ⇡ 1000 SM events accepted
every month [1].
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term [57] usually adopted for VAEs

DKL(~µ,~�) = �
1

2

X

i

�
log(�2

i )� �2
i � µ2

i + 1
�
, (2)

and � is a hyperparameter defined in the range [0, 1] [58].

Both models are trained for 100 epochs with a batch size
of 1024, using early stopping if there is no improvement in
the loss observed after ten epochs. All models are trained
with floating point precision on an NVIDIA RTX2080
GPU. We refer to these as the baseline floating-point
(BF) models.

IV. ANOMALY DETECTION SCORES

An autoencoder is optimized to retain the minimal set
of information needed to reconstruct a accurate estimate
of the input. During inference, an autoencoder might have
problems generalizing to features it was not exposed to
during training. Selecting events where the autoencoder
output is far from the given input is often seen as an
e↵ective AD algorithm. For this purpose, one could use
a metric that measures the distance between the input
and the output. The simplest solution is to use the same
metric that defines the training loss function. In our case,
we use the MSE between the input and the output. We
refer to this strategy as input-output (IO) AD.

In the case of a VAE deployed in the L1T, one cannot
simply exploit an IO AD strategy since this would require
sampling random numbers on the FPGA. The trigger
decision would not be deterministic, something usually
tolerated only for service triggers, and not for triggers
serving physics studies. Moreover, one would have to store
random numbers on the FPGA, which would consume
resources and increase the latency. To deal with this
problem, we consider an alternative strategy by defining
an AD score based on the ~µ and ~� values returned by
the encoder (see Eq. (1)). In particular, we consider two
options: the KL divergence term entering the VAE loss
(see Eq. (2)) and the z-score of the origin ~0 in the latent
space with respect to a Gaussian distribution centered at
~µ with standard deviation ~� [10]:

Rz =
X

i

µ2
i

�2
i

. (3)

These two AD scores have several benefits we take advan-
tage of: Gaussian sampling is avoided; we save significant
resources and latency by not evaluating the decoder; and
we do not need to bu↵er the input data for computation
of the MSE. During the model optimization, we tune
� so that we obtain (on the benchmark signal models)
comparable performance for the DKL AD score and the
IO AD score of the VAE.

V. PERFORMANCE AT FLOATING-POINT
PRECISION

The model performance is assessed using the four new
physics benchmark models. The anomaly-detection scores
considered in this paper are IO AD for the AE models,
Rz and DKL ADs for the VAE models. For completeness,
results obtained from the IO AD score of the VAE models
are also shown. The receiver operating characteristic
(ROC) curves in Figures II and III show the true positive
rate (TPR) as a function of the false positive rate (FPR),
computed by changing the lower threshold applied on the
di↵erent anomaly scores. We further quantify the AD
performance quoting the area under the ROC curve (AUC)
and the TPR corresponding to a FPR working point of
10�5 (see Table I), which on this dataset corresponds to
the reduction of the background rate to approximately
1000 events per month.

From the ROC curves, we conclude that DKL can be
used as an anomaly metric for both the DNN and CNN
VAE. This has the potential to significantly reduce the
inference latency and on-chip resource consumption as
only half of the network (the encoder) needs to be evalu-
ated and that there no longer is a need to bu↵er the input
in order to compute an MSE loss. The Rz metric per-
forms worse and is therefore not included in the following
studies.

VI. MODEL COMPRESSION

We adopt di↵erent strategies for model compression.
First of all, we compress the BF model by pruning the
dense and convolutional layers by 50% of their connec-
tions, following the same procedure as Ref. [19]. Pruning
is enforced using the polynomial decay implemented in
TensorFlow pruning API, a Keras-based [59] inter-
face consisting of a simple drop-in replacement of Keras
layers. A sparsity of 50% is targeted, meaning only 50%
of the weights are retained in the pruned layers and the
remaining ones are set to zero. The pruning is set to start
from the fifth epoch of the training to ensure the model
is closer to a stable minimum before removing weights
deemed unimportant. By pruning the BF model layers
to a target sparsity of 50%, the number of floating-point
operations required when evaluating the model, can be
significantly reduced. We refer to the resulting model
as the baseline pruned (BP) model. For the VAE, only
the encoder is pruned, since only that will be deployed
on FPGA. The BP models are taken as a reference to
evaluate the resource saving of the following compression
strategies, including QAT and PTQ.
Furthermore, we perform a QAT of each model de-

scribed in Section III, implementing them in the QKeras
library [23]. The bit precision is scanned between 2 and
16 with a 2-bit step. When quantizing a model, we also
impose a pruning of the dense (convolutional) layers by
50%, as done for the DNN (CNN) BP models. The results

Key observation: Can build an anomaly 
score from the latent space of VAE directly! 
No need to run decoder!
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Stay tuned 
for Run 3… 
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Figure 2. Example graphs showing 2 of the sectors for one event with p
min
T = 2GeV, z0 < 15 cm,

��/�r < 0.0006, 8 � sectors, and 2 ⌘ sectors. True track segments are denoted by blue edges, while false
track segments are denoted by gray.

graphs for 2 different sectors in one event when subdividing an event into 8 � sectors and 2 ⌘ sectors are
shown in Fig. 2.

Based on these graph construction criteria, we can measure the efficiency and purity of the resulting
graphs. These are shown for different choices for the number of � and ⌘ sectors in Fig. 3 based on 50
events in train 1 TrackML sample. In particular for 8 � sectors and 2 ⌘ sectors, the graphs retain an
efficiency of 98% and a purity of 57%.

In addition to the need to subdivide the graphs to reduce size, for a fixed-latency FPGA implementation,
hardware resources cannot be dynamically reallocated to accept variable-size input arrays, so the graph
sizes must be made uniform. Thus, we typically consider a fixed maximum input graph size. One common
choice is to truncate the graphs based on the 95th percentile graph size for each sector1. Thus, only 5% of
the input graphs will be truncated. For smaller graphs that have fewer nodes or edges, we zero-pad the
feature matrices to create ‘null’ nodes and add connections between ‘null’ nodes to create ‘null’ edges. We
discuss the effects of the graph truncation and zero-padding on the network performance in Sec. 7.

Figure 4 shows the 95th percentile for the number of nodes and edges in each sector depending on the
number of sectors chosen. For example, the 95th percentile graph size for 8 � sectors and 2 ⌘ sectors is
113 nodes and 196 edges for this 2 GeV graph construction. Depending on the range of applicability for a
given FPGA implementation, a different graph construction and segmentation strategy can be adopted. In
particular, if a more relaxed set of graph construction criteria is adopted, a greater number of nodes and
edges will be included per event. In the Supplementary Material, we demonstrate how the number of nodes
and edges vary when considering 1 GeV graphs. In particular, the 95th percentile for the number of nodes

1 We note that for up to 2 ⌘ sectors, each of the sectors has the same hit and track multiplicity distribution because the multiplicity depends on |⌘| but not on �.
In general, for a larger number of ⌘ sectors, a variable maximum graph size could be chosen depending on the |⌘| range of the sector.
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graphs for 2 different sectors in one event when subdividing an event into 8 � sectors and 2 ⌘ sectors are
shown in Fig. 2.

Based on these graph construction criteria, we can measure the efficiency and purity of the resulting
graphs. These are shown for different choices for the number of � and ⌘ sectors in Fig. 3 based on 50
events in train 1 TrackML sample. In particular for 8 � sectors and 2 ⌘ sectors, the graphs retain an
efficiency of 98% and a purity of 57%.

In addition to the need to subdivide the graphs to reduce size, for a fixed-latency FPGA implementation,
hardware resources cannot be dynamically reallocated to accept variable-size input arrays, so the graph
sizes must be made uniform. Thus, we typically consider a fixed maximum input graph size. One common
choice is to truncate the graphs based on the 95th percentile graph size for each sector1. Thus, only 5% of
the input graphs will be truncated. For smaller graphs that have fewer nodes or edges, we zero-pad the
feature matrices to create ‘null’ nodes and add connections between ‘null’ nodes to create ‘null’ edges. We
discuss the effects of the graph truncation and zero-padding on the network performance in Sec. 7.

Figure 4 shows the 95th percentile for the number of nodes and edges in each sector depending on the
number of sectors chosen. For example, the 95th percentile graph size for 8 � sectors and 2 ⌘ sectors is
113 nodes and 196 edges for this 2 GeV graph construction. Depending on the range of applicability for a
given FPGA implementation, a different graph construction and segmentation strategy can be adopted. In
particular, if a more relaxed set of graph construction criteria is adopted, a greater number of nodes and
edges will be included per event. In the Supplementary Material, we demonstrate how the number of nodes
and edges vary when considering 1 GeV graphs. In particular, the 95th percentile for the number of nodes

1 We note that for up to 2 ⌘ sectors, each of the sectors has the same hit and track multiplicity distribution because the multiplicity depends on |⌘| but not on �.
In general, for a larger number of ⌘ sectors, a variable maximum graph size could be chosen depending on the |⌘| range of the sector.

5



34

▸ Build realistic (segmented) graphs for L1 trigger applications
▸ ≤8-bit quantized GNN can achieve good edge classification performance

GNN EDGE CLASSIFICATION PERFORMANCEElabd et al. GNNs for Tracking on FPGAs

2 0 2 4 1, 12 10 12 14
Pop]h bepo

0,

1,

2,

3,

4,

5,

1,,

AQ
C
 [%

]

113 nodao( 152 adcao
Buhh cn]ldo

4 ϕ oacpono( 2 η oacpono
3 enpacan bepo

PuC (atlacpad%
dho0ih (PPQ%
Bnarep]o (QAP%

Figure 7. AUC values as a function of the integer bit width with total bit width fixed to 24 (left) and total
bit width with integer bit width fixed to 7 (right). Either the full sectorized 2 GeV graphs (dashed line) or
those truncated at 113 nodes and 196 edges (solid line), corresponding to the 95% percentile graph size,
are used as input. The performance is evaluated with 1000 graphs from train 2. With precision greater
than ap fixed<12,7>, the AUC closely approximates the full floating point model for the same graphs.

7. Figure 7 shows the AUC as a function of the number of integer bits (left) and total bits (right). We see
that with 12 total bits and 7 integer bits, we effectively reproduce the 32-bit floating point model.

With hls4ml, we employ post-training quantization (PTQ), meaning the model training does not take
into account the expected reduced precision. The required bit width for full performance can be reduced
further through techniques like quantization-aware training (QAT) (Coelho et al., 2021, 2019; Hawks et al.,
2021), in which the effects of reduced precision operations are accounted for during training. Figure 7
(right) shows that with a QAT library called BREVITAS (Pappalardo et al., 2021), only 7 total bits are
needed for full performance. Details of the QAT procedure can be found in the Supplementary Material.

Figure 7 also shows the effect of graph truncation and zero-padding on the edge classification performance.
Graph zero-padding, in which null nodes and edges are appended to a graph with too few nodes or edges,
does not usually affect the classification performance. With the exception of a few rare cases, it is possible
to pad a graph such that the null nodes and edges form a completely disconnected graph from the original
graph. In this case, no messages are passed between the original and null subgraphs, and results for the
original subgraph are the same. Graph truncation, on the other hand, has a twofold effect on the IN’s
performance. The first effect is that truncated nodes and edges are no longer factored into the creation or
passing of messages, which clearly affects the final output. The second effect is that truncated edges can no
longer be classified by the IN. To account for this second effect in our performance metrics, we consider
each truncated edge as classified as false. Figure 7 demonstrates that net result of the above effects is a
drop in the optimal AUC from 99.9% to about 95%.

All resource estimates are computed using Vivado HLS 2019.2 using logic synthesis targeting a Xilinx
Virtex UltraScale+ VU9P FPGA with part number xcvu9p-flga2104-2L-e. The latency and II
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graphs for 2 different sectors in one event when subdividing an event into 8 � sectors and 2 ⌘ sectors are
shown in Fig. 2.

Based on these graph construction criteria, we can measure the efficiency and purity of the resulting
graphs. These are shown for different choices for the number of � and ⌘ sectors in Fig. 3 based on 50
events in train 1 TrackML sample. In particular for 8 � sectors and 2 ⌘ sectors, the graphs retain an
efficiency of 98% and a purity of 57%.

In addition to the need to subdivide the graphs to reduce size, for a fixed-latency FPGA implementation,
hardware resources cannot be dynamically reallocated to accept variable-size input arrays, so the graph
sizes must be made uniform. Thus, we typically consider a fixed maximum input graph size. One common
choice is to truncate the graphs based on the 95th percentile graph size for each sector1. Thus, only 5% of
the input graphs will be truncated. For smaller graphs that have fewer nodes or edges, we zero-pad the
feature matrices to create ‘null’ nodes and add connections between ‘null’ nodes to create ‘null’ edges. We
discuss the effects of the graph truncation and zero-padding on the network performance in Sec. 7.

Figure 4 shows the 95th percentile for the number of nodes and edges in each sector depending on the
number of sectors chosen. For example, the 95th percentile graph size for 8 � sectors and 2 ⌘ sectors is
113 nodes and 196 edges for this 2 GeV graph construction. Depending on the range of applicability for a
given FPGA implementation, a different graph construction and segmentation strategy can be adopted. In
particular, if a more relaxed set of graph construction criteria is adopted, a greater number of nodes and
edges will be included per event. In the Supplementary Material, we demonstrate how the number of nodes
and edges vary when considering 1 GeV graphs. In particular, the 95th percentile for the number of nodes

1 We note that for up to 2 ⌘ sectors, each of the sectors has the same hit and track multiplicity distribution because the multiplicity depends on |⌘| but not on �.
In general, for a larger number of ⌘ sectors, a variable maximum graph size could be chosen depending on the |⌘| range of the sector.
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estimates are from C synthesis. For simplicity, when scanning the total bit width X in the following results,
we use a fixed-point precision of ap fixed<X,X/2>, i.e. X/2 bits are used for each the integer and
fractional parts, but the results generalize to other quantization schemes. The hls4ml version used is a
custom branch available at Elabd et al. (2021).

7.1 Throughput-optimized results
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Figure 8. Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock
cycles (right) for a constant reuse factor of 8 as a function of the total bit width.

First, we present results for the throughput-optimized implementation. We consider graphs consisting of
28 nodes and 56 edges, which is near the upper limit that can be synthesized with this design. Figure 8
(left) shows the resource usage as a function of the bit width for a constant RF of 8. As expected, increasing
the bit width increases the resource usage especially for LUTs and DSPs. As shown previously, this model
has good performance with a total bit width of 12 bits, however the bit width can be reduced down to 7 bits
using QAT (Coelho et al., 2021, 2019; Hawks et al., 2021), meaning a substantion reduction in resource
usage. We also note that Vivado HLS implements multiplications with bit widths of 10 and above using
DSPs, and multiplications below 10 bits using LUTs (Xilinx, Inc., 2020). For this reason, we see that the
DSP usage drops to zero for 10 bits and below.

Figure 8 (right) shows the latency in clock cycles (for a 5 ns clock period) as a function of the total bit
precision, which ranges from about 300 to 370 ns. For simplicity, we consider ap fixed<X,X/2> data
types, so the number of integer bits is half of the total bits. By construction, the II for this design should
be equal to the RF, although it may be smaller due to optimizations in Vivado HLS. In this case, the II is
constant at 40 ns given the constant RF of 8.

We also scan the RF at a constant fixed point precision of ap fixed<14,7>, to study the resources
and timing as a function of decreasing concurrency. Figure 9 shows the resource usage estimates (left) and
latency and II (right) versus RF. In general, increasing the RF, decreases the resources, while increasing
the latency and II. For a RF of 1, the algorithm saturates the FPGA (100% DSP usage and 65% LUT
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Figure 8. Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock
cycles (right) for a constant reuse factor of 8 as a function of the total bit width.

First, we present results for the throughput-optimized implementation. We consider graphs consisting of
28 nodes and 56 edges, which is near the upper limit that can be synthesized with this design. Figure 8
(left) shows the resource usage as a function of the bit width for a constant RF of 8. As expected, increasing
the bit width increases the resource usage especially for LUTs and DSPs. As shown previously, this model
has good performance with a total bit width of 12 bits, however the bit width can be reduced down to 7 bits
using QAT (Coelho et al., 2021, 2019; Hawks et al., 2021), meaning a substantion reduction in resource
usage. We also note that Vivado HLS implements multiplications with bit widths of 10 and above using
DSPs, and multiplications below 10 bits using LUTs (Xilinx, Inc., 2020). For this reason, we see that the
DSP usage drops to zero for 10 bits and below.

Figure 8 (right) shows the latency in clock cycles (for a 5 ns clock period) as a function of the total bit
precision, which ranges from about 300 to 370 ns. For simplicity, we consider ap fixed<X,X/2> data
types, so the number of integer bits is half of the total bits. By construction, the II for this design should
be equal to the RF, although it may be smaller due to optimizations in Vivado HLS. In this case, the II is
constant at 40 ns given the constant RF of 8.

We also scan the RF at a constant fixed point precision of ap fixed<14,7>, to study the resources
and timing as a function of decreasing concurrency. Figure 9 shows the resource usage estimates (left) and
latency and II (right) versus RF. In general, increasing the RF, decreases the resources, while increasing
the latency and II. For a RF of 1, the algorithm saturates the FPGA (100% DSP usage and 65% LUT

This is a provisional file, not the final typeset article 16



35

▸ Small graphs (~30 nodes, ~60 edges) easily fit on 1 FPGA
▸ Within L1T latency (300 ns) and II (50 ns) requirements

GNN FPGA IMPLEMENTATION

Elabd et al. GNNs for Tracking on FPGAs

estimates are from C synthesis. For simplicity, when scanning the total bit width X in the following results,
we use a fixed-point precision of ap fixed<X,X/2>, i.e. X/2 bits are used for each the integer and
fractional parts, but the results generalize to other quantization schemes. The hls4ml version used is a
custom branch available at Elabd et al. (2021).
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Figure 8. Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock
cycles (right) for a constant reuse factor of 8 as a function of the total bit width.

First, we present results for the throughput-optimized implementation. We consider graphs consisting of
28 nodes and 56 edges, which is near the upper limit that can be synthesized with this design. Figure 8
(left) shows the resource usage as a function of the bit width for a constant RF of 8. As expected, increasing
the bit width increases the resource usage especially for LUTs and DSPs. As shown previously, this model
has good performance with a total bit width of 12 bits, however the bit width can be reduced down to 7 bits
using QAT (Coelho et al., 2021, 2019; Hawks et al., 2021), meaning a substantion reduction in resource
usage. We also note that Vivado HLS implements multiplications with bit widths of 10 and above using
DSPs, and multiplications below 10 bits using LUTs (Xilinx, Inc., 2020). For this reason, we see that the
DSP usage drops to zero for 10 bits and below.

Figure 8 (right) shows the latency in clock cycles (for a 5 ns clock period) as a function of the total bit
precision, which ranges from about 300 to 370 ns. For simplicity, we consider ap fixed<X,X/2> data
types, so the number of integer bits is half of the total bits. By construction, the II for this design should
be equal to the RF, although it may be smaller due to optimizations in Vivado HLS. In this case, the II is
constant at 40 ns given the constant RF of 8.

We also scan the RF at a constant fixed point precision of ap fixed<14,7>, to study the resources
and timing as a function of decreasing concurrency. Figure 9 shows the resource usage estimates (left) and
latency and II (right) versus RF. In general, increasing the RF, decreases the resources, while increasing
the latency and II. For a RF of 1, the algorithm saturates the FPGA (100% DSP usage and 65% LUT
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estimates are from C synthesis. For simplicity, when scanning the total bit width X in the following results,
we use a fixed-point precision of ap fixed<X,X/2>, i.e. X/2 bits are used for each the integer and
fractional parts, but the results generalize to other quantization schemes. The hls4ml version used is a
custom branch available at Elabd et al. (2021).
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Figure 8. Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock
cycles (right) for a constant reuse factor of 8 as a function of the total bit width.

First, we present results for the throughput-optimized implementation. We consider graphs consisting of
28 nodes and 56 edges, which is near the upper limit that can be synthesized with this design. Figure 8
(left) shows the resource usage as a function of the bit width for a constant RF of 8. As expected, increasing
the bit width increases the resource usage especially for LUTs and DSPs. As shown previously, this model
has good performance with a total bit width of 12 bits, however the bit width can be reduced down to 7 bits
using QAT (Coelho et al., 2021, 2019; Hawks et al., 2021), meaning a substantion reduction in resource
usage. We also note that Vivado HLS implements multiplications with bit widths of 10 and above using
DSPs, and multiplications below 10 bits using LUTs (Xilinx, Inc., 2020). For this reason, we see that the
DSP usage drops to zero for 10 bits and below.

Figure 8 (right) shows the latency in clock cycles (for a 5 ns clock period) as a function of the total bit
precision, which ranges from about 300 to 370 ns. For simplicity, we consider ap fixed<X,X/2> data
types, so the number of integer bits is half of the total bits. By construction, the II for this design should
be equal to the RF, although it may be smaller due to optimizations in Vivado HLS. In this case, the II is
constant at 40 ns given the constant RF of 8.

We also scan the RF at a constant fixed point precision of ap fixed<14,7>, to study the resources
and timing as a function of decreasing concurrency. Figure 9 shows the resource usage estimates (left) and
latency and II (right) versus RF. In general, increasing the RF, decreases the resources, while increasing
the latency and II. For a RF of 1, the algorithm saturates the FPGA (100% DSP usage and 65% LUT
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estimates are from C synthesis. For simplicity, when scanning the total bit width X in the following results,
we use a fixed-point precision of ap fixed<X,X/2>, i.e. X/2 bits are used for each the integer and
fractional parts, but the results generalize to other quantization schemes. The hls4ml version used is a
custom branch available at Elabd et al. (2021).
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Figure 8. Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock
cycles (right) for a constant reuse factor of 8 as a function of the total bit width.

First, we present results for the throughput-optimized implementation. We consider graphs consisting of
28 nodes and 56 edges, which is near the upper limit that can be synthesized with this design. Figure 8
(left) shows the resource usage as a function of the bit width for a constant RF of 8. As expected, increasing
the bit width increases the resource usage especially for LUTs and DSPs. As shown previously, this model
has good performance with a total bit width of 12 bits, however the bit width can be reduced down to 7 bits
using QAT (Coelho et al., 2021, 2019; Hawks et al., 2021), meaning a substantion reduction in resource
usage. We also note that Vivado HLS implements multiplications with bit widths of 10 and above using
DSPs, and multiplications below 10 bits using LUTs (Xilinx, Inc., 2020). For this reason, we see that the
DSP usage drops to zero for 10 bits and below.

Figure 8 (right) shows the latency in clock cycles (for a 5 ns clock period) as a function of the total bit
precision, which ranges from about 300 to 370 ns. For simplicity, we consider ap fixed<X,X/2> data
types, so the number of integer bits is half of the total bits. By construction, the II for this design should
be equal to the RF, although it may be smaller due to optimizations in Vivado HLS. In this case, the II is
constant at 40 ns given the constant RF of 8.

We also scan the RF at a constant fixed point precision of ap fixed<14,7>, to study the resources
and timing as a function of decreasing concurrency. Figure 9 shows the resource usage estimates (left) and
latency and II (right) versus RF. In general, increasing the RF, decreases the resources, while increasing
the latency and II. For a RF of 1, the algorithm saturates the FPGA (100% DSP usage and 65% LUT
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we use a fixed-point precision of ap fixed<X,X/2>, i.e. X/2 bits are used for each the integer and
fractional parts, but the results generalize to other quantization schemes. The hls4ml version used is a
custom branch available at Elabd et al. (2021).
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Figure 8. Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock
cycles (right) for a constant reuse factor of 8 as a function of the total bit width.

First, we present results for the throughput-optimized implementation. We consider graphs consisting of
28 nodes and 56 edges, which is near the upper limit that can be synthesized with this design. Figure 8
(left) shows the resource usage as a function of the bit width for a constant RF of 8. As expected, increasing
the bit width increases the resource usage especially for LUTs and DSPs. As shown previously, this model
has good performance with a total bit width of 12 bits, however the bit width can be reduced down to 7 bits
using QAT (Coelho et al., 2021, 2019; Hawks et al., 2021), meaning a substantion reduction in resource
usage. We also note that Vivado HLS implements multiplications with bit widths of 10 and above using
DSPs, and multiplications below 10 bits using LUTs (Xilinx, Inc., 2020). For this reason, we see that the
DSP usage drops to zero for 10 bits and below.

Figure 8 (right) shows the latency in clock cycles (for a 5 ns clock period) as a function of the total bit
precision, which ranges from about 300 to 370 ns. For simplicity, we consider ap fixed<X,X/2> data
types, so the number of integer bits is half of the total bits. By construction, the II for this design should
be equal to the RF, although it may be smaller due to optimizations in Vivado HLS. In this case, the II is
constant at 40 ns given the constant RF of 8.

We also scan the RF at a constant fixed point precision of ap fixed<14,7>, to study the resources
and timing as a function of decreasing concurrency. Figure 9 shows the resource usage estimates (left) and
latency and II (right) versus RF. In general, increasing the RF, decreases the resources, while increasing
the latency and II. For a RF of 1, the algorithm saturates the FPGA (100% DSP usage and 65% LUT
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Figure 1: Illustrations of the four scientific datasets in this work to study interpretable GDL models.

pretable models in many scenarios, e.g., most applications in HEP, where data from real experiments
lack labels and models have to be trained on simulation data (Nachman & Shimmin, 2019). Here,
model interpretation is used to verify if a model indeed captures the patterns that match scientific
principles instead of some spurious correlation between the simulation environment and labels. Un-
fortunately, to the best of our knowledge, there have been no studies on interpretable GDL models
let alone their applications in scientific problems. Some previous post-hoc methods may be extended
to interpret a pre-trained GDL model while they suffer from some limitations as to be reviewed in
Sec. 2. Moreover, recent works (Rudin, 2019; Laugel et al., 2019; Bordt et al., 2022; Miao et al.,
2022) have shown that the data patterns detected by post-hoc methods are often inconsistent across
interpretation methods and pre-trained models, and may hardly offer reliable scientific insights.

To fill the gap, this work proposes to study interpretable GDL models. Inspired by the recent
work (Miao et al., 2022), we first propose a general mechanism named Learnable Randomness
Injection (LRI) that allows building inherently interpretable GDL models based on a broad range of
GDL backbones. We then propose four datasets from real-world scientific applications in HEP and
biochemistry and provide an extensive comparison between LRI-induced GDL models and previous
post-hoc interpretation approaches (after being adapted to GDL models) over these datasets.

Our LRI mechanism provides model interpretation by detecting a subset of points from the point
cloud that is most likely to determine the label of interest. The idea of LRI is to inject learn-
able randomness to each point, where, along with training the model for label prediction, injected
randomness on the points that are important to prediction gets reduced. The convergent amounts
of randomness on points essentially reveal the importance of the corresponding points for predic-
tion. Specifically in GDL, as the importance of a point may be indicated by either the existence
of this point in the system or its geometric location, we propose to inject two types of random-
ness, Bernoulli randomness, with the framework name LRI-Bernoulli to test existence importance
of points and Gaussian randomness on geometric features, with the framework name LRI-Gaussian
to test location importance of points. Moreover, by properly parameterized such Gaussian random-
ness, we may tell for a point, how in different directions perturbing its location affects the prediction
result more. With such fine-grained geometric information, we may estimate the direction of the
particle velocity when analyzing particle collision data in HEP. LRI is theoretically sound as it es-
sentially uses a variational objective derived from the information bottleneck principle (Tishby et al.,
2000). LRI-induced models also show better robustness to the distribution shifts between training
and test scenarios, which gives scientists more confidence in applying them in practice.

We note that one obstacle to studying interpretable GDL models is the lack of valid datasets that
consist of both classification labels and scientifically meaningful patterns to verify the quality of
interpretation. Therefore, another significant contribution of this work is to prepare four bench-
mark datasets grounded on real-world scientific applications to facilitate interpretable GDL research.
These datasets cover important applications in HEP and biochemistry. We illustrate the four datasets
in Fig. 1 and briefly introduce them below. More detailed descriptions can be found in Appendix C.

• ActsTrack is a particle tracking dataset in HEP that is used to reconstruct the properties, such
as the kinematics of a charged particle given a set of position measurements from a tracking
detector. Tracking is an indispensable step in analyzing HEP experimental data as well as particle
tracking used in medical applications such as proton therapy (Schulte et al., 2004; Thomson,
2013; Ai et al., 2022). Our task is formulated differently from traditional track reconstruction
tasks: We predict the existence of a z ! µµ decay and use the set of points from the µ’s to verify
model interpretation, which can be used to reconstruct µ tracks. ActsTrack also provides a
controllable environment (e.g., magnetic field strength) to study fine-grained geometric patterns.
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Fig. 2: An Example of Trigger Event. In trigger events, particles decay into two or
more different particles soon after the collision. Lines represent the trajectories
of the particles. Green ones come from the center of the collision. Blue, red, and
orange tracks start from the position where the decay happens.

calorimeter detectors and they are interested in different target particles. Jet
tagger belongs to offline analysis, and the readout speed from the calorimeter
is much slower than the event rate, invalidating their applications in the online
use case. Several ML methods for top tagging are discussed in [22]. We gain
insights from the model design of existing tagging algorithms, especially those
supporting the particle cloud [36,37,38]. Our final goal is to apply the algorithm
to an online data-driven trigger system in an end-to-end fashion [29,44].

3 Problem Definition

Figure 2 schematically illustrates the trigger problem. The input of the physics
event consists of a set of tracks and is represented as a matrix X 2 Rn⇥d, where
n is the total number of tracks, and d is the dimensionality of the features of each
track. Tracks are treated as vertices in a graph. The goal is to determine whether
this graph corresponds to a trigger event and triggers the data acquisition system
to retain the readouts from the entire detector for future studies.

The commonly adopted GNN-based trigger prediction model attempts to
perform end-to-end prediction from the raw hits that are the coordinates of the
detector pixels where a particle traverses the detector. This domain-agnostic ap-
proach does not offer any insight into why an event becomes a trigger and results
in inferior performance. Domain scientists require physics-aware reasoning and
interpretation by explicitly incorporating physics models and properties. Since
collecting advanced physics properties by detector requires sophisticated detec-
tors and incurs considerable latency compared to the fast geometric detector, it
is not feasible to use advanced physics properties in an online data acquisition
environment. To incorporate the advanced physics properties, we must regress
them onto the available geometric data. Our ultimate goal is to predict trig-
gers while retaining the interpretability and rationality of intermediate tasks by
replicating offline physics analysis workflows.

http://doi.org/10.3389/fdata.2022.828666
https://2022.ecmlpkdd.org/wp-content/uploads/2022/09/sub_1256.pdf
https://openreview.net/forum?id=6u7mf9s2A9
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Fig. 1: sPHENIX Track Detector and Trigger Design.

The sPHENIX detector shown in Figure 1 consists of several subdetectors
for collecting a wide range of patterns of physics events. The two subsystems
closest to the collision point are of most interest to this study. They are the
MAPS vertex detector (MVTX) and intermediate tracker (INTT). The MVTX
detector provides vertexing and tracking with high precision, while the INTT
provides tracking with a resolution capable of determining the individual beam
crossings at RHIC. sPHENIX also uses an outer calorimetry system to measure
the energy of particles in the detector at a low speed of 15 kHz, limited by the
readout electronics. As the collision rate for protons at RHIC is approximately
2 MHz, the calorimeter system does not work with the online setting and is not
considered in this paper.

Heavy Flavor decays that we attempt to detect exhibit several prominent
characteristics with a wide value range that overlaps with background events.
The complex pattern and non-trivial decision boundary between heavy flavor de-
lay and background events provide an ideal playground to apply ML techniques.
The particles of interest decay on short time scales, typically a few nanoseconds
or less. These particles may travel several millimeters at the speed of light before
they decay. Physicists often extrapolate Particle tracks in the detector space to
determine whether the tracks coincide with the beam collision point.

A tremendous volume of data is produced during collider experiments, but
only a tiny fraction of the data needs to be selected due to the rarity of the
targeted events. For example, an event that includes a charm quark typically
occurs once for every 50 background events [1,21] while a beauty quark occurs
once for roughly 1000 background events [2]. Collider experiments require a
trigger system to reduce data in real-time and resolve the big data problem that
is impractical for any data processing facility [11]. The triggers make decisions
to keep or discard an event in situ and significantly reduce the data volume that
needs to be retained for physics experiments. Our paper brings forth significant
impacts to physics experiments by shifting many offline analysis tasks into an
online setting and significantly shortening the latency between experiment and
scientific discovery.
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provides tracking with a resolution capable of determining the individual beam
crossings at RHIC. sPHENIX also uses an outer calorimetry system to measure
the energy of particles in the detector at a low speed of 15 kHz, limited by the
readout electronics. As the collision rate for protons at RHIC is approximately
2 MHz, the calorimeter system does not work with the online setting and is not
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determine whether the tracks coincide with the beam collision point.

A tremendous volume of data is produced during collider experiments, but
only a tiny fraction of the data needs to be selected due to the rarity of the
targeted events. For example, an event that includes a charm quark typically
occurs once for every 50 background events [1,21] while a beauty quark occurs
once for roughly 1000 background events [2]. Collider experiments require a
trigger system to reduce data in real-time and resolve the big data problem that
is impractical for any data processing facility [11]. The triggers make decisions
to keep or discard an event in situ and significantly reduce the data volume that
needs to be retained for physics experiments. Our paper brings forth significant
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The sPHENIX detector shown in Figure 1 consists of several subdetectors
for collecting a wide range of patterns of physics events. The two subsystems
closest to the collision point are of most interest to this study. They are the
MAPS vertex detector (MVTX) and intermediate tracker (INTT). The MVTX
detector provides vertexing and tracking with high precision, while the INTT
provides tracking with a resolution capable of determining the individual beam
crossings at RHIC. sPHENIX also uses an outer calorimetry system to measure
the energy of particles in the detector at a low speed of 15 kHz, limited by the
readout electronics. As the collision rate for protons at RHIC is approximately
2 MHz, the calorimeter system does not work with the online setting and is not
considered in this paper.

Heavy Flavor decays that we attempt to detect exhibit several prominent
characteristics with a wide value range that overlaps with background events.
The complex pattern and non-trivial decision boundary between heavy flavor de-
lay and background events provide an ideal playground to apply ML techniques.
The particles of interest decay on short time scales, typically a few nanoseconds
or less. These particles may travel several millimeters at the speed of light before
they decay. Physicists often extrapolate Particle tracks in the detector space to
determine whether the tracks coincide with the beam collision point.

A tremendous volume of data is produced during collider experiments, but
only a tiny fraction of the data needs to be selected due to the rarity of the
targeted events. For example, an event that includes a charm quark typically
occurs once for every 50 background events [1,21] while a beauty quark occurs
once for roughly 1000 background events [2]. Collider experiments require a
trigger system to reduce data in real-time and resolve the big data problem that
is impractical for any data processing facility [11]. The triggers make decisions
to keep or discard an event in situ and significantly reduce the data volume that
needs to be retained for physics experiments. Our paper brings forth significant
impacts to physics experiments by shifting many offline analysis tasks into an
online setting and significantly shortening the latency between experiment and
scientific discovery.
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the energy of particles in the detector at a low speed of 15 kHz, limited by the
readout electronics. As the collision rate for protons at RHIC is approximately
2 MHz, the calorimeter system does not work with the online setting and is not
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targeted events. For example, an event that includes a charm quark typically
occurs once for every 50 background events [1,21] while a beauty quark occurs
once for roughly 1000 background events [2]. Collider experiments require a
trigger system to reduce data in real-time and resolve the big data problem that
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for collecting a wide range of patterns of physics events. The two subsystems
closest to the collision point are of most interest to this study. They are the
MAPS vertex detector (MVTX) and intermediate tracker (INTT). The MVTX
detector provides vertexing and tracking with high precision, while the INTT
provides tracking with a resolution capable of determining the individual beam
crossings at RHIC. sPHENIX also uses an outer calorimetry system to measure
the energy of particles in the detector at a low speed of 15 kHz, limited by the
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or less. These particles may travel several millimeters at the speed of light before
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A tremendous volume of data is produced during collider experiments, but
only a tiny fraction of the data needs to be selected due to the rarity of the
targeted events. For example, an event that includes a charm quark typically
occurs once for every 50 background events [1,21] while a beauty quark occurs
once for roughly 1000 background events [2]. Collider experiments require a
trigger system to reduce data in real-time and resolve the big data problem that
is impractical for any data processing facility [11]. The triggers make decisions
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the energy of particles in the detector at a low speed of 15 kHz, limited by the
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A tremendous volume of data is produced during collider experiments, but
only a tiny fraction of the data needs to be selected due to the rarity of the
targeted events. For example, an event that includes a charm quark typically
occurs once for every 50 background events [1,21] while a beauty quark occurs
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▸ Unstructured pruning: removing some connections regardless of placement

STRUCTURED VS UNSTRUCTURED PRUNING 39



▸ Unstructured pruning: removing some connections regardless of placement
▸ Structured pruning: removing all input/output connections of particular nodes
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COMMON GOALS
▸ Tools 

▸ Accessible workflows like HLS to 
make hardware more accessible 
domain scientists 

▸ ML techniques 

▸ Efficient training and 
implementation methods 
codesigned for specific hardware 

▸ Hardware 

▸ Evolving compute platforms, e.g. 
power-law growth in FPGA logic 

42
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▸Reconstruct all events and reject 98% of them in ~12.5 μs 

▸ Individual algorithms usually have to be < 1 μs and keep up with new events every 25 ns 

▸ Latency necessitates all FPGA design (many algorithms running on 729 FPGAs!) 

▸ Individual algorithms usually have to fit on < 1 FPGA

5

ATCA Processor: APx
● Powered by a VU9P FPGA with 

2.5M logic cells 

● 100 bidirectional links up to 28 Gbps
● 76 to the front directly connected to mid-

board optics

● 24 to the rear transmission module via 

high density connector

– Rear transmission module supports 

interfaces for legacy links and 

generic serial I/O

● Control, management, and  

monitoring by an embedded linux 

mezzanine (ELM) on-board 
● Featuring a ZYNQ system-on-chip with 

dual core ARM processor and FPGA 

logic

● Large 128GB memory mezzanine  

for look-up table applications

● Shelf management via custom IPMI 

mezzanine running real time OS ELM IPMC Memory

LUT

CMS-TDR-021

https://cds.cern.ch/record/2714892
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LUT LUT LUT

LUTLUTLUT

LUT

LUT LUT

LUT LUT

LUT

▸ Operations can be implemented with core operations (gates)

▸ Gates are like look-up tables (LUTs)

▸ If we can (re-)program arbitrary LUTs and (re-)connect them however we want, 
we can (re-)implement whatever algorithm we want!



MODERN FPGAS
ALL FPGA ARCHITECTURE 16

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

Typical modern FPGA: 

(Kintex ultrascale+)

1.3M FFs 

700k LUTs

5500 DSPs 

2200 BRAMs

O(50-100) optical 
transceivers 

running at  

~O(15) Gbs

▸ Pros:  

▸ Reprogrammable interconnects  
between embedded components that  
perform multiplication (DSPs),  
apply logical functions (LUTs),  
or store memory (BRAM) 

▸ High throughput I/O: O(100)  
optical transceivers running at  
O(15) Gbps 

▸ Massively parallel 

▸ Low power 

▸ Cons: 

▸ Requires domain knowledge to program (using VHDL/Verilog)
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▸ Algorithm comfortably fits in latency requirements (<1 μs)
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ABSTRACT
Accessible machine learning algorithms, software, and diagnos-
tic tools for energy-e�cient devices and systems are extremely
valuable across a broad range of application domains. In scienti�c
domains, real-time near-sensor processing can drastically improve
experimental design and accelerate scienti�c discoveries. To sup-
port domain scientists, we have developed hls4ml, an open-source
software-hardware codesign work�ow to interpret and translate
machine learning algorithms for implementation with both FPGA
and ASIC technologies. In this paper, we describe the essential
features of the hls4ml work�ow including network optimization
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which can be incorporated naturally into the device implemen-
tations. We expand on previous hls4ml work by extending capa-
bilities and techniques towards low-power implementations and
increased usability: new P����� APIs, quantization-aware prun-
ing, end-to-end FPGA work�ows, long pipeline kernels for low
power, and new device backends include an ASIC work�ow. Taken
together, these and continued e�orts in hls4ml will arm a new gen-
eration of domain scientists with accessible, e�cient, and powerful
tools for machine-learning-accelerated discovery.
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A�������: Recent results at the Large Hadron Collider (LHC) have pointed to enhanced physics ca-
pabilities through the improvement of the real-time event processing techniques. Machine learning
methods are ubiquitous and have proven to be very powerful in LHC physics, and particle physics
as a whole. However, exploration of the use of such techniques in low-latency, low-power FPGA
(Field Programmable Gate Array) hardware has only just begun. FPGA-based trigger and data
acquisition systems have extremely low, sub-microsecond latency requirements that are unique to
particle physics. We present a case study for neural network inference in FPGAs focusing on a
classifier for jet substructure which would enable, among many other physics scenarios, searches for
new dark sector particles and novel measurements of the Higgs boson. While we focus on a specific
example, the lessons are far-reaching. A companion compiler package for this work is developed
based on High-Level Synthesis (HLS) called hls4ml to build machine learning models in FPGAs.
The use of HLS increases accessibility across a broad user community and allows for a drastic
decrease in firmware development time. We map out FPGA resource usage and latency versus
neural network hyperparameters to identify the problems in particle physics that would benefit from
performing neural network inference with FPGAs. For our example jet substructure model, we fit
well within the available resources of modern FPGAs with a latency on the scale of 100 ns.

K�������: Trigger algorithms; Trigger concepts and systems (hardware and software); Trigger
detectors; Data acquisition concepts

A�X�� �P����: 1804.06913

1Corresponding author.

c� 2018 CERN. Published by IOP Publishing Ltd on behalf of Sissa
Medialab. Original content from this work may be used under the terms

of the Creative Commons Attribution 3.0 licence. Any further distribution of this work
must maintain attribution to the author(s) and the title of the work, journal citation
and DOI.

https://doi.org/10.1088/1748-0221/13/07/P07027

2020 JINST 15 P05026
P�������� �� IOP P��������� ��� S���� M�������

R�������: February 20, 2020
A�������: April 7, 2020

P��������: May 29, 2020

Fast inference of Boosted Decision Trees in FPGAs for

particle physics

S. Summers,
a,1

G. Di Guglielmo,
b

J. Duarte,
c

P. Harris,
d

D. Hoang,
e

S. Jindariani,
f

E. Kreinar,
g

V. Loncar,
a,h

J. Ngadiuba,
a

M. Pierini,
a

D. Rankin,
d

N. Tran
f

and Z. Wu
i

aCERN, Esplanade des Particules 1, Geneva 23 1211, Switzerland
bDepartment of Computer Science, Columbia University,
500 West 120 Street, New York, NY 10027, U.S.A.

cDepartment of Physics, University of California San Diego,
9500 Gilman Dr., La Jolla, CA 92093, U.S.A.

dDepartment of Physics, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A.

eDepartment of Physics, Rhodes College,
2000 North Parkway, Memphis, TN 38112, U.S.A

f Fermi National Accelerator Laboratory,
Batavia, IL 60510, U.S.A.

gHawkEye360, Herndon, VA 20170, U.S.A.
hInstitute of Physics Belgrade, Pregrevica 118, Belgrade, Serbia
iDepartment of Physics, University of Illinois at Chicago,
W. Taylor St., Chicago, IL 60607, U.S.A.

E-mail: sioni.summers@cern.ch

A�������: We describe the implementation of Boosted Decision Trees in the hls4ml library, which
allows the translation of a trained model into FPGA firmware through an automated conversion
process. Thanks to its fully on-chip implementation, hls4ml performs inference of Boosted
Decision Tree models with extremely low latency. With a typical latency less than 100 ns, this
solution is suitable for FPGA-based real-time processing, such as in the Level-1 Trigger system
of a collider experiment. These developments open up prospects for physicists to deploy BDTs in
FPGAs for identifying the origin of jets, better reconstructing the energies of muons, and enabling
better selection of rare signal processes.
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Abstract—We present ESP4ML, an open-source system-level
design flow to build and program SoC architectures for embedded
applications that require the hardware acceleration of machine
learning and signal processing algorithms. We realized ESP4ML
by combining two established open-source projects (ESP and
HLS4ML) into a new, fully-automated design flow. For the SoC
integration of accelerators generated by HLS4ML, we designed
a set of new parameterized interface circuits synthesizable with
high-level synthesis. For accelerator configuration and manage-
ment, we developed an embedded software runtime system on top
of Linux. With this HW/SW layer, we addressed the challenge of
dynamically shaping the data traffic on a network-on-chip to acti-
vate and support the reconfigurable pipelines of accelerators that
are needed by the application workloads currently running on
the SoC. We demonstrate our vertically-integrated contributions
with the FPGA-based implementations of complete SoC instances
booting Linux and executing computer-vision applications that
process images taken from the Google Street View database.

I. INTRODUCTION

Since 2012, when the use of deep neural networks for
classifying million of images from the web gave spectacular
results [1], [2], the design of specialized accelerators for
machine learning (ML) has become the main trend across
all types of computing systems [3]. While the initial focus
was mostly on systems in the cloud, the demand for enabling
machine learning into embedded devices at the edge keeps
growing [4]. To date, most research efforts have focused on the
accelerator design in isolation, rather than on their integration
into a complete system-on-chip (SoC). However, to realize
innovative embedded systems for such domains as robotics,
autonomous driving, and personal assistance, ML accelerators
must be coupled with accelerators for other types of algorithms
such as signal processing or feedback control. Furthermore,
as the complexity of ML applications keeps growing, the
challenges of integrating many different accelerators into an
SoC at design time and managing the shared resources of the
SoC at runtime become much harder.

In this paper we present ESP4ML, a system-level design
flow that enables the rapid realization of SoC architectures
for embedded machine learning. With ESP4ML, SoC designers
can integrate at design time many heterogeneous accelerators
that can be easily connected at run-time form various tightly-
coupled pipelines (Fig. 1). These accelerator pipelines are
reconfigured dynamically (and transparently to the application
programmer) to support the particular embedded application
that is currently running on top of Linux on the SoC processor.

Fig. 1. The proposed design flow maps full embedded applications into a
complete SoC instance, which hosts reconfigurable pipelines of ML acceler-
ators and other accelerators (e.g. for Computer Vision) connected via a NoC.

To realize ESP4ML, we embraced the concept of open-
source hardware (OSH) [5], in multiple ways. First, our main
goal is to simplify the process of designing complete SoCs
that can be rapidly prototyped on FPGA boards. The ESP4ML
users can focus on the design of specific accelerators, which
is simplified with high-level synthesis (HLS), while reusing
available OSH designs for the main SoC components (e.g. the
Ariane RISC-V processor core [6]). Second, ESP4ML is the
result of combining two existing OSH projects that have been
independently developed: ESP and HLS4ML.

• ESP is a platform for developing heterogeneous SoCs that
promotes the ideas of platform-based design [7], [8].

• HLS4ML is a compiler that translates ML models devel-
oped with commonly used open-source packages such as
KERAS and PYTORCH into accelerator specifications that
can be synthesized with HLS for FPGAs [9], [10]. While
originally developed for research in particle physics,
HLS4ML has broad applicability.

To combine these two projects and reach our main goal 1:
1) We enhanced the ESP architecture to support the re-

configurable activation of pipelines of accelerators, by
implementing point-to-point (p2p) communication chan-
nels among them. This is done by reusing only the
preexisting interconnection infrastructure without any
overhead, i.e. without any addition of channel queues,
routers, or links in the network-on-chip (NoC).

2) We augmented the ESP methodology with an application
programming interface (API) that for a given embedded
application and a target SoC architecture allows the
specification of the software part to be accelerated as
a simple dataflow of computational kernels.

1We released the contributions of this paper as part of the ESP project on
Github [8].

Mach. Learn.: Sci. Technol. 2 (2021) 015001 https://doi.org/10.1088/2632-2153/aba042
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Abstract
We present the implementation of binary and ternary neural networks in the ?Hb9KH library,
designed to automatically convert deep neural network models to digital circuits with
field-programmable gate arrays (FPGA) firmware. Starting from benchmark models trained with
floating point precision, we investigate different strategies to reduce the network’s resource
consumption by reducing the numerical precision of the network parameters to binary or ternary.
We discuss the trade-off between model accuracy and resource consumption. In addition, we show
how to balance between latency and accuracy by retaining full precision on a selected subset of
network components. As an example, we consider two multiclass classification tasks: handwritten
digit recognition with the MNIST data set and jet identification with simulated proton-proton
collisions at the CERN Large Hadron Collider. The binary and ternary implementation has similar
performance to the higher precision implementation while using drastically fewer FPGA resources.

1. Introduction

Field-programmable gate arrays (FPGAs) are an efficient and flexible processing solution to perform low
latency and high bandwidth inference of deep neural networks (DNNs). Their design is extremely functional
to parallelize the mathematical operations typical of DNN inference tasks, namely matrix multiplication and
activation function application. FPGAs can be reprogrammed, which offers advantages in terms of flexibility
with respect to application-specific integrated circuits (ASICs). At the same time, they share some of the
advantages offered by ASICs, such as low power consumption and speed.

Typically, FPGAs are used to emulate generic digital circuits as a preliminary step toward the design of
custom ASICs or as an alternative to them. For instance, hundreds of FPGAs are used as custom electronic
logic to process in real time the proton-proton collisions at the CERN Large Hadron Collider (LHC). With
beams colliding every 25 ns and thanks to a built-in buffering system, a typical LHC experiment hasO(1) µs
to decide whether to keep or discard a given event. This real-time decision-taking system, referred to as the
level-1 (L1) trigger, consists of a set of digital circuits implementing physics-motivated rule-based selection
algorithms. Currently, these algorithms are deployed on FPGAs, mounted on custom electronics boards.

The severe L1 latency constraint prevents the LHC experimental collaborations from deploying complex
rule-based algorithms on the L1 FPGA boards. Machine learning (ML) solutions, and in particular DNNs,
are currently being investigated as fast-to-execute and parallelisable approximations of rule-based
algorithms. For instance, the CMS collaboration has deployed boosted decision trees (BDTs) in the L1 trigger
electronic logic [1]. Following this approach, one could train a DNN to process a given input (e.g. energy
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The determination of charged particle trajectories in collisions at the CERN Large

Hadron Collider (LHC) is an important but challenging problem, especially in the high

interaction density conditions expected during the future high-luminosity phase of the

LHC (HL-LHC). Graph neural networks (GNNs) are a type of geometric deep learning

algorithm that has successfully been applied to this task by embedding tracker data

as a graph—nodes represent hits, while edges represent possible track segments—and

classifying the edges as true or fake track segments. However, their study in hardware- or

software-based trigger applications has been limited due to their large computational

cost. In this paper, we introduce an automated translation workflow, integrated into a

broader tool called hls4ml, for converting GNNs into firmware for field-programmable

gate arrays (FPGAs). We use this translation tool to implement GNNs for charged particle

tracking, trained using the TrackML challenge dataset, on FPGAs with designs targeting

different graph sizes, task complexites, and latency/throughput requirements. This work

could enable the inclusion of charged particle tracking GNNs at the trigger level for

HL-LHC experiments.

Keywords: graph neural networks, FPGAs, tracking, LHC, trigger

1. INTRODUCTION

In high energy physics (HEP), charged particle tracking (Strandlie and Frühwirth, 2010; Amrouche
et al., 2020) is a crucial task necessary for the accurate determination of the kinematics of the
particles produced in a collision event, including the position, direction, and momentum of the
particles at their production points. This task leverages specialized detectors positioned close
to the beam collision area in a strong magnetic field. When charged particles are created in
the collisions, their trajectories bend in the magnetic field and they ionize the material of these
detectors as they move outwards from the production point, providing position measurements
along the trajectory of each particle. The objective of tracking algorithms is to identify the individual
trajectories of these charged particles and extract relevant particle kinematics. Current tracking
algorithms (Frühwirth, 1987; Billoir, 1989; Billoir and Qian, 1990; Mankel, 1997; Chatrchyan et al.,
2014; Aaboud et al., 2017) scale worse than quadratically with the number of hits, which is expected
to increase dramatically at higher beam intensities due to the presence of simultaneous proton-
proton interactions (or pileup) and for more granular, more sensitive detectors. This motivates
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Graph neural networks have been shown to achieve excellent performance for several
crucial tasks in particle physics, such as charged particle tracking, jet tagging, and
clustering. An important domain for the application of these networks is the FGPA-
based first layer of real-time data filtering at the CERN Large Hadron Collider, which
has strict latency and resource constraints. We discuss how to design distance-weighted
graph networks that can be executed with a latency of less than one μs on an FPGA. To do
so, we consider a representative task associated to particle reconstruction and
identification in a next-generation calorimeter operating at a particle collider. We use a
graph network architecture developed for such purposes, and apply additional
simplifications to match the computing constraints of Level-1 trigger systems, including
weight quantization. Using the hls4ml library, we convert the compressed models into
firmware to be implemented on an FPGA. Performance of the synthesized models is
presented both in terms of inference accuracy and resource usage.

Keywords: deep learning, field-programmable gate arrays, fast inference, graph network, imaging calorimeter

1. INTRODUCTION

At the CERN Large Hadron Collider (LHC), high-energy physics (HEP) experiments collect signals
generated by the particles produced in high-energy proton collisions that occur every 25 ns, when
two proton beams cross. The readout from the detectors that capture the particles emerging from the
collision is filtered by a real-time processing system, known as the trigger, that discards uninteresting
collision events, based on a set of predefined algorithms. The trigger system is structured in two
stages: a Level-1 trigger (L1T), implemented with custom electronics on-detector and field-
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A Reconfigurable Neural Network ASIC for
Detector Front-End Data Compression

at the HL-LHC
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Abstract— Despite advances in the programmable logic capa-
bilities of modern trigger systems, a significant bottleneck
remains in the amount of data to be transported from the
detector to off-detector logic where trigger decisions are made.
We demonstrate that a neural network (NN) autoencoder model
can be implemented in a radiation-tolerant application-specific
integrated circuit (ASIC) to perform lossy data compression alle-
viating the data transmission problem while preserving critical
information of the detector energy profile. For our application,
we consider the high-granularity calorimeter from the Compact
Muon Solenoid (CMS) experiment at the CERN Large Hadron
Collider. The advantage of the machine learning approach is in
the flexibility and configurability of the algorithm. By changing
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the NN weights, a unique data compression algorithm can
be deployed for each sensor in different detector regions and
changing detector or collider conditions. To meet area, perfor-
mance, and power constraints, we perform quantization-aware
training to create an optimized NN hardware implementation.
The design is achieved through the use of high-level synthesis
tools and the hls4ml framework and was processed through
synthesis and physical layout flows based on a low-power (LP)-
CMOS 65-nm technology node. The flow anticipates 200 Mrad
of ionizing radiation to select gates and reports a total area
of 3.6 mm2 and consumes 95 mW of power. The simulated
energy consumption per inference is 2.4 nJ. This is the first
radiation-tolerant on-detector ASIC implementation of an NN
that has been designed for particle physics applications.

Index Terms— Application-specific integrated circuit (ASIC),
artificial intelligence (AI), autoencoder, hardware accelerator,
high-level synthesis (HLS), Large Hadron Collider (LHC),
machine learning (ML), single-event effect (SEE) mitigation.

I. INTRODUCTION

BREAKTHROUGHS in the precision and speed of sensing
instrumentation are impactful on advances in scientific

methodologies and theories. Thus, a common paradigm across
many scientific disciplines in physics has been to increase
the resolution of the sensing equipment in order to increase
either the robustness or the sensitivity of the experiment itself.
This demand for increasingly higher sensitivity in experiments,
along with advances in the design of state-of-the-art sensing
systems, has resulted in rapidly growing big data pipelines
such that transmission of acquired data to the processing unit
via conventional methods is no longer feasible. Data trans-
mission is commonly much less efficient than data process-
ing. Therefore, placing data compression and processing as
close as possible to data creation while maintaining physics
performance is a crucial task in modern physics experiments.

At the CERN Large Hadron Collider (LHC) and its high
luminosity upgrade (HL-LHC), extreme collision rates present
extreme challenges for data processing and transmission at
multiple stages in detector readout and trigger systems. As the
initial stage in the data chain, the on-detector (front-end)
electronics that readout detector sensors must operate with
low latency and low-power (LP) dissipation in a high-radiation
environment, necessitating the use of application-specific
integrated circuits (ASICs). In order to mitigate the ini-
tial bottleneck of moving data from front-end ASICs to
off-detector (back-end) systems based on field-programmable
gate arrays (FPGAs), front-end ASICs must provide edge com-
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ABSTRACT

Recurrent neural networks have been shown to be effective architectures for many tasks in high
energy physics, and thus have been widely adopted. Their use in low-latency environments has,
however, been limited as a result of the difficulties of implementing recurrent architectures on field-
programmable gate arrays (FPGAs). In this paper we present an implementation of two types of
recurrent neural network layers—long short-term memory and gated recurrent unit—within the
hls4ml framework. We demonstrate that our implementation is capable of producing effective designs
for both small and large models, and can be customized to meet specific design requirements for
inference latencies and FPGA resources. We show the performance and synthesized designs for
multiple neural networks, many of which are trained specifically for jet identification tasks at the
CERN Large Hadron Collider.

1 Introduction

Machine learning (ML) has seen a huge expansion in its range of uses over the last decade. It is difficult to find a field
of industry or science that has not at least explored ML in some capacity. One particular field where ML usage has seen
widespread interest is in high energy physics, which benefits from complex multidimensional problems, large datasets
of accurate simulation, and substantial existing computing infrastructure. These all contribute to a field which has
adopted ML algorithms for many aspects of research. While most ML algorithms in high energy physics are run using
CPUs and graphics processing units (GPUs) which provide inference latencies in the milliseconds, field-programmable
gate arrays (FPGAs) and application-specific integrated circuits (ASICs) have begun to be used for those applications

⇤ekhoda@uw.edu
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estimates are from C synthesis. For simplicity, when scanning the total bit width X in the following results,
we use a fixed-point precision of ap fixed<X,X/2>, i.e. X/2 bits are used for each the integer and
fractional parts, but the results generalize to other quantization schemes. The hls4ml version used is a
custom branch available at Elabd et al. (2021).

7.1 Throughput-optimized results
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Figure 8. Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock
cycles (right) for a constant reuse factor of 8 as a function of the total bit width.

First, we present results for the throughput-optimized implementation. We consider graphs consisting of
28 nodes and 56 edges, which is near the upper limit that can be synthesized with this design. Figure 8
(left) shows the resource usage as a function of the bit width for a constant RF of 8. As expected, increasing
the bit width increases the resource usage especially for LUTs and DSPs. As shown previously, this model
has good performance with a total bit width of 12 bits, however the bit width can be reduced down to 7 bits
using QAT (Coelho et al., 2021, 2019; Hawks et al., 2021), meaning a substantion reduction in resource
usage. We also note that Vivado HLS implements multiplications with bit widths of 10 and above using
DSPs, and multiplications below 10 bits using LUTs (Xilinx, Inc., 2020). For this reason, we see that the
DSP usage drops to zero for 10 bits and below.

Figure 8 (right) shows the latency in clock cycles (for a 5 ns clock period) as a function of the total bit
precision, which ranges from about 300 to 370 ns. For simplicity, we consider ap fixed<X,X/2> data
types, so the number of integer bits is half of the total bits. By construction, the II for this design should
be equal to the RF, although it may be smaller due to optimizations in Vivado HLS. In this case, the II is
constant at 40 ns given the constant RF of 8.

We also scan the RF at a constant fixed point precision of ap fixed<14,7>, to study the resources
and timing as a function of decreasing concurrency. Figure 9 shows the resource usage estimates (left) and
latency and II (right) versus RF. In general, increasing the RF, decreases the resources, while increasing
the latency and II. For a RF of 1, the algorithm saturates the FPGA (100% DSP usage and 65% LUT

This is a provisional file, not the final typeset article 16

Elabd et al. GNNs for Tracking on FPGAs

Figure 12. Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock
cycles (right) for a constant fixed point precision of ap fixed<14,7> as a function of the reuse factor
for the resource-optimized implementation. Input graphs consist of 448 nodes and 896 edges. Each clock
cycle corresponds to 5 ns.
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Figure 13. Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock
cycles (right) for a constant reuse factor of 1 and a bit width of ap fixed<14,7> as a function of the
number of nodes nnodes. The number of edges is fixed to nedges = 2nnodes, as is empirically observed for
the 2 GeV graphs. Each clock cycle corresponds to 5 ns.
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▸ Modified design can scale to much larger graphs (~1400 nodes, ~2800 
edges), for longer latency (6 μs) and II (2 μs)

SCALING TO LARGER GRAPHS

Elabd et al. GNNs for Tracking on FPGAs

estimates are from C synthesis. For simplicity, when scanning the total bit width X in the following results,
we use a fixed-point precision of ap fixed<X,X/2>, i.e. X/2 bits are used for each the integer and
fractional parts, but the results generalize to other quantization schemes. The hls4ml version used is a
custom branch available at Elabd et al. (2021).

7.1 Throughput-optimized results
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Figure 8. Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock
cycles (right) for a constant reuse factor of 8 as a function of the total bit width.

First, we present results for the throughput-optimized implementation. We consider graphs consisting of
28 nodes and 56 edges, which is near the upper limit that can be synthesized with this design. Figure 8
(left) shows the resource usage as a function of the bit width for a constant RF of 8. As expected, increasing
the bit width increases the resource usage especially for LUTs and DSPs. As shown previously, this model
has good performance with a total bit width of 12 bits, however the bit width can be reduced down to 7 bits
using QAT (Coelho et al., 2021, 2019; Hawks et al., 2021), meaning a substantion reduction in resource
usage. We also note that Vivado HLS implements multiplications with bit widths of 10 and above using
DSPs, and multiplications below 10 bits using LUTs (Xilinx, Inc., 2020). For this reason, we see that the
DSP usage drops to zero for 10 bits and below.

Figure 8 (right) shows the latency in clock cycles (for a 5 ns clock period) as a function of the total bit
precision, which ranges from about 300 to 370 ns. For simplicity, we consider ap fixed<X,X/2> data
types, so the number of integer bits is half of the total bits. By construction, the II for this design should
be equal to the RF, although it may be smaller due to optimizations in Vivado HLS. In this case, the II is
constant at 40 ns given the constant RF of 8.

We also scan the RF at a constant fixed point precision of ap fixed<14,7>, to study the resources
and timing as a function of decreasing concurrency. Figure 9 shows the resource usage estimates (left) and
latency and II (right) versus RF. In general, increasing the RF, decreases the resources, while increasing
the latency and II. For a RF of 1, the algorithm saturates the FPGA (100% DSP usage and 65% LUT
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Figure 12. Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock
cycles (right) for a constant fixed point precision of ap fixed<14,7> as a function of the reuse factor
for the resource-optimized implementation. Input graphs consist of 448 nodes and 896 edges. Each clock
cycle corresponds to 5 ns.
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Figure 13. Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock
cycles (right) for a constant reuse factor of 1 and a bit width of ap fixed<14,7> as a function of the
number of nodes nnodes. The number of edges is fixed to nedges = 2nnodes, as is empirically observed for
the 2 GeV graphs. Each clock cycle corresponds to 5 ns.

19

1 clock cycle = 5 ns
Front. Big Data 5, 828666 (2022)

http://doi.org/10.3389/fdata.2022.828666


FAST ML SCIENCE BENCHMARKS arXiv:2207.07958
1. Define generic ML benchmarks for bespoke 

domain problems that attract interest from a 
broad community of system and ML experts 

2. Design benchmarks to satisfy challenging 
scientific requirements that overlap with a 
number of systems

50

https://arxiv.org/abs/2207.07958


FAST ML SCIENCE BENCHMARKS
FASTML SCIENCE BENCHMARKS:

ACCELERATING REAL-TIME SCIENTIFIC EDGE MACHINE LEARNING
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ABSTRACT
Applications of machine learning (ML) are growing by the day for many unique and challenging scientific
applications. However, a crucial challenge facing these applications is their need for ultra low-latency and
on-detector ML capabilities. Given the slowdown in Moore’s law and Dennard scaling, coupled with the rapid
advances in scientific instrumentation that is resulting in growing data rates, there is a need for ultra-fast ML at the
extreme edge. Fast ML at the edge is essential for reducing and filtering scientific data in real-time to accelerate
science experimentation and enable more profound insights. To accelerate real-time scientific edge ML hardware
and software solutions, we need well-constrained benchmark tasks with enough specification to be generically
applicable and accessible. These benchmarks can guide the design of future edge ML hardware for scientific
applications capable of meeting the nanosecond and microsecond level latency requirements. To this end, we
present an initial set of scientific ML benchmarks, covering a variety of ML and embedded system techniques.

1 INTRODUCTION

In pursuit of scientific discovery across many domains, ex-
periments are becoming exceedingly sophisticated to probe
physical systems at increasingly smaller spatial resolutions
and shorter timescales. These order of magnitude advance-
ments have led to explosions in both data volumes and rich-
ness, leaving domain scientists to develop novel methods to
handle growing data processing needs. Figure 1 shows the
volume of data (y-axis) that is generated in scientific appli-
cations such as those at the CERN Large Hadron Collider
(LHC) and in particle accelerator controls. They produce
tens of terabytes of data every second, as discussed below.

As scientific ecosystems snowball in their speed and scale,
new data processing and reduction paradigms need to be
integrated into the system-level design. The large volume
of data needs to be rapidly reduced to a sustainable level by
a real-time event filter system on whether the data should
be kept for further analysis or discarded. Fortunately, this
coincides with the rise of machine learning (ML), or the
use of algorithms that can learn directly from data. Recent
advancements demonstrate that ML architectures based on

*Equal contribution 1University of California San Diego, La
Jolla, CA, USA 2Fermi National Accelerator Laboratory, Batavia,
IL, USA 3Harvard University, Cambridge, MA, USA. Corre-
spondence to: Javier Duarte <jduarte@ucsd.edu>, Nhan Tran
<ntran@fnal.gov>, Vijay Janapa Reddi <vj@eecs.harvard.edu>.
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MLSys Conference, Santa Clara, CA, USA,

2022. Copyright 2022 by the author(s).

Figure 1. Reference latencies and streaming input data rates for
common benchmarks and those proposed in this paper. The hori-
zontal error bar represents the range of acceptable latencies for the
various domains, while the vertical error bar denotes the range of
streaming data rates typical for those domains. The real-time scien-
tific application domain, or the FastML Science domain, produces
a staggering volume of data and the inference latency requirements
are orders of magnitude far more stringent than they are for more
traditional consumer-facing applications and their benchmarks.
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▸ Set of 3 benchmarks inspired by low-latency edge 
ML use cases in science

▸ Cover a wide range of latency/data rate constraints
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present an initial set of scientific ML benchmarks, covering a variety of ML and embedded system techniques.

1 INTRODUCTION

In pursuit of scientific discovery across many domains, ex-
periments are becoming exceedingly sophisticated to probe
physical systems at increasingly smaller spatial resolutions
and shorter timescales. These order of magnitude advance-
ments have led to explosions in both data volumes and rich-
ness, leaving domain scientists to develop novel methods to
handle growing data processing needs. Figure 1 shows the
volume of data (y-axis) that is generated in scientific appli-
cations such as those at the CERN Large Hadron Collider
(LHC) and in particle accelerator controls. They produce
tens of terabytes of data every second, as discussed below.

As scientific ecosystems snowball in their speed and scale,
new data processing and reduction paradigms need to be
integrated into the system-level design. The large volume
of data needs to be rapidly reduced to a sustainable level by
a real-time event filter system on whether the data should
be kept for further analysis or discarded. Fortunately, this
coincides with the rise of machine learning (ML), or the
use of algorithms that can learn directly from data. Recent
advancements demonstrate that ML architectures based on
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Figure 1. Reference latencies and streaming input data rates for
common benchmarks and those proposed in this paper. The hori-
zontal error bar represents the range of acceptable latencies for the
various domains, while the vertical error bar denotes the range of
streaming data rates typical for those domains. The real-time scien-
tific application domain, or the FastML Science domain, produces
a staggering volume of data and the inference latency requirements
are orders of magnitude far more stringent than they are for more
traditional consumer-facing applications and their benchmarks.
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FAST ML SCIENCE BENCHMARKS

▸ Set of 3 benchmarks inspired by low-latency edge 
ML use cases in science

▸ Cover a wide range of latency/data rate constraints

▸ Unique set of qualities
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ACCELERATING REAL-TIME SCIENTIFIC EDGE MACHINE LEARNING
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and software solutions, we need well-constrained benchmark tasks with enough specification to be generically
applicable and accessible. These benchmarks can guide the design of future edge ML hardware for scientific
applications capable of meeting the nanosecond and microsecond level latency requirements. To this end, we
present an initial set of scientific ML benchmarks, covering a variety of ML and embedded system techniques.
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volume of data (y-axis) that is generated in scientific appli-
cations such as those at the CERN Large Hadron Collider
(LHC) and in particle accelerator controls. They produce
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new data processing and reduction paradigms need to be
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various domains, while the vertical error bar denotes the range of
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are orders of magnitude far more stringent than they are for more
traditional consumer-facing applications and their benchmarks.

arXiv:2207.07958

Formalized Scientific Edge Real-Time
Benchmark Workload(s) Computing Constraints

FastML Science Benchmarks (this work) X X X X
SciMLBench (Thiyagalingam et al., 2021) X X X x

LHC New Physics Dataset (Govorkova et al., 2021) x X X X
MLPerf HPC (Farrell et al., 2021) X X x x

BenchCounil AIBench HPC (BenchCouncil, 2018) X X x x
MLCommons Science (MLCommons, 2020) X X x x
ITU Modulation Classification (ITU, 2021) x x X X

Table 1. Comparison of existing machine learning benchmarks and related initiatives.

general, HPC is being leveraged by the scientific community
for accelerating scientific insights and discovery. MLPerf
HPC aims to systematically understand how scientific ap-
plications perform on diverse supercomputers, focusing on
the time to train for three representative scientific machine
learning applications with massive datasets (i.e. cosmology,
extreme weather analytics, and molecular dynamics). Sim-
ilarly, AIBench HPCAI500 also includes a benchmark on
extreme weather analytics. However, all of these existing
benchmarks fail to capture the unique constraints and de-
mands required by scientific “edge” computing in which the
processing must occur near the data source in real-time.

The LHC physics dataset for new physics detection (Gov-
orkova et al., 2021) is the only dataset to our knowledge
that retains such characteristics, requiring unsupervised de-
tection at 40 MHz. However, a related dataset for charged
particle tracking at the LHC, the throughput phase of the
TrackML Challenge (Amrouche et al., 2021) emphasized
balancing the accuracy of the solution with the speed
of inference. Similarly, one of the tasks in the Interna-
tional Telecommunication Union’s (ITU) ML in 5G Chal-
lenge (ITU, 2021) requires ultra-low latency for a different
application, namely modulation classification in commu-
nication networks, which displays the generalizability of
real-time scientific edge ML benchmarks. Benchmarking
workloads of this nature can ultimately be a catalyst in en-
abling a diverse range of new solutions and applications.

3 BENCHMARKS

In this section, we first introduce our benchmark design
philosophy to establish a suite of real-time scientific bench-
marks for edge machine learning. Next, we introduce the
tasks, models, datasets, and associated metrics that define
this initial suite. These benchmarks are in the initial stages
and the task list will continue to evolve over time.

3.1 Benchmark Design Philosophy

Our benchmarks tasks cover supervised learning, unsuper-
vised learning, and reinforcement learning and map generi-
cally onto other scientific applications. The benchmarks are
summarized in Table 2, which we explain in more detail in
the subsequent sections.

In each benchmark task, we are working at the edge, very
close to the data source. For each task, the input data has
been digitized1, and is therefore quantized with a custom in-
teger precision. As is often the case in experimental design,
we layout system constraints that will serve as guide rails
for the various benchmark tasks.

Solutions for the scientific ML edge benchmarks must sat-
isfy the given requirements, and then the algorithm perfor-
mance is measured by a task-specific metric. Each bench-
mark has specific system-level constraints. They are all
latency-bound, with latency requirements ranging from hun-
dreds of nanoseconds to milliseconds. In some cases, the
algorithm latency and data arrival frequency (pipeline inter-
val) will not be the same. In one application, we also have
requirements for area and power.

3.2 Supervised Learning: Jet Classification

At the LHC, proton bunches collide at an extreme frequency
of 40 MHz, and data rates at the two multipurpose high en-
ergy particle physics experiments, CMS (Chatrchyan et al.,
2008) and ATLAS (Airapetian et al., 1999), are of the or-
der of hundreds of terabytes per second. With such high
data rates, the task of real-time processing to filter events
to reduce data rates to manageable levels for offline pro-
cessing is called triggering. The first level of the trigger at
CMS (Sirunyan et al., 2020) and ATLAS (Aad et al., 2020)
is performed in FPGAs in custom electronics platforms
and have latency requirements at the microsecond scale; to
put this into proper perspective, it is worth noting that the

1In even more extreme scenarios in the future, we may consider
analog inputs.
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Figure 2. The five jet type classes—light quark (q), gluon (g), top
quark (t), W, and Z boson—for the supervised learning benchmark
task. Figure adapted from (Moreno et al., 2020).

MLPerf inference tasks’ latency typically ranges between
10 to 100s of milliseconds.

While this task is specific to particle physics, filtering data
to find the most interesting subset in real-time to reduce data
transmission and volumes in big data scientific experiments
is a very common challenge. In this scenario, we are looking
for proton collisions with interesting energetic radiation
patterns called jets. In particular, we would like to identify
rare jet signatures originating from the W or Z boson or the
top quark (t) in contrast to more common signatures from
the lighter quarks (q) or gluons (g). Due to high fidelity
simulations in particle physics experiments, this becomes a
supervised multi-classification task. A schematic illustration
of the different types of jets is shown in Fig. 2.

Dataset We allow for two types of input features. Sev-
eral previous related studies used expert features in a dense,
fully-connected network topology which we will describe
in the following section as our baseline model. There are 16
expert-designed features, traditionally standardized with a
standard scalar and represented with fixed-point precision
with 16 total bits and six integer bits. In realistic systems,
the classification task would also require the computation
of those expert features, but we do not need that here. How-
ever, to that end, we make available a more challenging
set of point cloud inputs which are the 100 most energetic
particles in the jet (with zero padding if there are less than
100 particles) (Pierini et al., 2020). Each particle is assumed
to be massless and has a feature set size of 3 corresponding
to the momentum vector. Models built from these input
particles can be more performant than the expert features
but could be more computationally expensive. Given that
the range of px, py, and pz for an individual particle is ap-
proximately contained within ±2 TeV, we adopt an input
integer quantization scheme of 16 total bits with a least sig-
nificant bit corresponding to 0.0625 GeV and a total range
of ±2048 GeV.

Baseline Model For our baseline model and performance,
we consider the 16-input dense, fully-connected architecture
presented in Ref. (Duarte et al., 2018). The architecture con-
sists of 16 ! 64 ! 32 ! 32 ! 5 MLP with quantization-
aware training (QAT) to a homogeneous precision for the
weights and biases of 6-bits (Coelho et al., 2021).

Performance Metrics There are many metrics used in the
literature for this benchmark model. The two we will focus
on are (1) classification accuracy and (2) FPR at TPR of
50% for the signal being Z jet (Hawks et al., 2021).

Real-time System Constraints In the planned upgrade of
the CMS trigger, the global correlator trigger would contain
jet tagging algorithms like the one described. This system
features a time-multiplexed design, such that information
from 6 consecutive proton beam crossings, which occur
even 25 ns, is processed simultaneously. For this system, a
latency of no more than 1µs and the ability to accept new
inputs every 150 ns is required (CMS Collaboration, 2020).

3.3 Unsupervised Learning: Irregular Sensor Data
Compression

Processing of LHC events requires two parallel streams of
detector data to be transmitted from on-detector readout
chips. The first is complete event data from all sensing ele-
ments, transmitted at the trigger accept rate of 100 kHz,
while the second is a compressed representation of the
same data at the full 40 MHz collision rate. This second,
lightweight representation is the basis for trigger decisions,
with a compression factor of O(400), ensuring parity be-
tween the bandwidth of each stream. The critical task is to
achieve this reduction in O(100 ns) with minimal impact on
downstream physics algorithms.

This task is common to many detector systems and directly
relevant to a host of on-device compression tasks for com-
plex sensor data. The scenario considers the CMS high-
granularity endcap calorimeter (HGCal), comprised of 6M
channels, each capturing a 5d (position, energy and time)
image of showering high-energy particles. HGCal is com-
prised of layers of hexagonal arrays, with a single particle
depositing energy into hundreds of individual sensors. Data
from each hexagonal array is compressed in an application-
specific integrated circuit (ASIC), with the encoded repre-
sentation transmitted off-detector and subsequently used to
recover the initial detector image as in Figure 3. A data-
driven approach is required to tune the parameters of the
compress and decompress algorithms to minimize differ-
ences between the original and decoded images.

Dataset Compression of the trigger data is accomplished
in multiple steps. First, nearest-neighbors within each hexag-
onal array are aggregated to form a set of 48 “trigger cells”

CURRENT & FUTURE BENCHMARKS
Type Benchmark

Input Pipeline Real-time
Misc. Req.

Baseline Model
Precision Rate Latency Parameters

Supervised Learning Jet Classification 16b 150 ns 1µs - 4,389
Unsupervised Learning Sensor Data Compression 9b 25 ns 100 ns area, power (65 nm) 2,288
Reinforcement Learning Beam Control 32b 5 ms 5 ms - 34,695

Table 2. Summary of constraints for three benchmark tasks and number of parameters for the benchmark baseline models.

Baseline Model(s) There are two models involved in this
benchmark task: (1) the surrogate model for the Booster
accelerator and (2) the online agent, which is correcting the
reference magnet power supplies in real-time. The surrogate
model is fixed in this benchmark task and plays the role of
the environment in this reinforcement learning task. The
long short-term memory (LSTM) (Hochreiter & Schmidhu-
ber, 1997) surrogate model inputs are the previous 150-time
steps of the top 5 causal variables—variables related to
the synchrotron and downstream accelerator currents and
current errors concerning reference. The model has approxi-
mately 1.5 million parameters.

The benchmark online agent running in the Arria10 system-
on-chip (SoC) is a multilayer perceptron taking the five
input parameters, has three hidden layers and approximately
35,000 parameters. The deep Q-network (Mnih et al., 2013;
2015) has 7 discrete outputs and maximizes the reward, R,
which is the negative of the error concerning the reference
current in the Booster, R = �|�Imin|. The benchmark
model weights and biases are quantized to 20 total bits in a
fixed-point representation in hardware.

Real-time System Constraints The Booster ramping cy-
cle rate is 15 Hz, which sets the control loop’s time scale.
We define the algorithm latency requirement as 5 ms for this
benchmark due to data movement latency.

Performance Metrics The primary performance metric
in this reference benchmark is the reward, R, described
above.

4 DISCUSSION AND OUTLOOK

This position paper highlights both the need and challenges
for developing machine learning (ML) benchmarks for edge
applications in science. Given the demise of Moore’s law
and Dennard scaling (Dennard et al., 1974; Esmaeilzadeh
et al., 2011) and advances in scientific instrumentation re-
sulting in rapidly growing data rates, edge computing is
becoming exceedingly crucial for reducing and filtering
scientific data in real-time to accelerate science experimen-
tation and enable more profound insights. There are chal-
lenges in building well-constrained benchmark tasks with
enough specification to be generically applicable and ac-
cessible simultaneously. However, we can use these edge
applications in extreme data processing environments to ad-

vance many scientific domains and enable the development
of state-of-the-art tools.

In devising scientific ML edge benchmarks tasks, we aim to
cover machine learning and embedded system techniques.
We choose three applications that span supervised, unsuper-
vised, and reinforcement learning. The system constraints
also span a wide range of latency requirements—from hun-
dreds of nanoseconds to milliseconds where technologies
vary from ASIC to FPGA to more relaxed constraints with
the freedom to choose system architecture. Finally, there is
also a variation in input data representations from expert-
level inputs to image data, point cloud data, and time-series
data. A summary of the proposed scientific edge ML bench-
marks are presented in Table 2 including the input, latency,
and pipeline interval constraints of the benchmark appli-
cations. In (Muhizi & Duarte, 2022), we also present a
prototype code repository for these benchmarks.

5 CONCLUSION

In this work, we present an initial set of scientific machine
learning benchmarks that are specifically geared towards
real-time scientific edge machine learning needs. Our goal is
to first and foremost identify and provide a suite of datasets
and a code repository for these various edge ML tasks. We
will collect and document different solutions and, based on
interest, extend this work. In particular, there is potential
to provide more domain applications such as for astronomy,
neuroscience, and microscopy that could attract a broader
set of use-cases.
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Figure 2. The five jet type classes—light quark (q), gluon (g), top
quark (t), W, and Z boson—for the supervised learning benchmark
task. Figure adapted from (Moreno et al., 2020).

MLPerf inference tasks’ latency typically ranges between
10 to 100s of milliseconds.

While this task is specific to particle physics, filtering data
to find the most interesting subset in real-time to reduce data
transmission and volumes in big data scientific experiments
is a very common challenge. In this scenario, we are looking
for proton collisions with interesting energetic radiation
patterns called jets. In particular, we would like to identify
rare jet signatures originating from the W or Z boson or the
top quark (t) in contrast to more common signatures from
the lighter quarks (q) or gluons (g). Due to high fidelity
simulations in particle physics experiments, this becomes a
supervised multi-classification task. A schematic illustration
of the different types of jets is shown in Fig. 2.

Dataset We allow for two types of input features. Sev-
eral previous related studies used expert features in a dense,
fully-connected network topology which we will describe
in the following section as our baseline model. There are 16
expert-designed features, traditionally standardized with a
standard scalar and represented with fixed-point precision
with 16 total bits and six integer bits. In realistic systems,
the classification task would also require the computation
of those expert features, but we do not need that here. How-
ever, to that end, we make available a more challenging
set of point cloud inputs which are the 100 most energetic
particles in the jet (with zero padding if there are less than
100 particles) (Pierini et al., 2020). Each particle is assumed
to be massless and has a feature set size of 3 corresponding
to the momentum vector. Models built from these input
particles can be more performant than the expert features
but could be more computationally expensive. Given that
the range of px, py, and pz for an individual particle is ap-
proximately contained within ±2 TeV, we adopt an input
integer quantization scheme of 16 total bits with a least sig-
nificant bit corresponding to 0.0625 GeV and a total range
of ±2048 GeV.

Baseline Model For our baseline model and performance,
we consider the 16-input dense, fully-connected architecture
presented in Ref. (Duarte et al., 2018). The architecture con-
sists of 16 ! 64 ! 32 ! 32 ! 5 MLP with quantization-
aware training (QAT) to a homogeneous precision for the
weights and biases of 6-bits (Coelho et al., 2021).

Performance Metrics There are many metrics used in the
literature for this benchmark model. The two we will focus
on are (1) classification accuracy and (2) FPR at TPR of
50% for the signal being Z jet (Hawks et al., 2021).

Real-time System Constraints In the planned upgrade of
the CMS trigger, the global correlator trigger would contain
jet tagging algorithms like the one described. This system
features a time-multiplexed design, such that information
from 6 consecutive proton beam crossings, which occur
even 25 ns, is processed simultaneously. For this system, a
latency of no more than 1µs and the ability to accept new
inputs every 150 ns is required (CMS Collaboration, 2020).

3.3 Unsupervised Learning: Irregular Sensor Data
Compression

Processing of LHC events requires two parallel streams of
detector data to be transmitted from on-detector readout
chips. The first is complete event data from all sensing ele-
ments, transmitted at the trigger accept rate of 100 kHz,
while the second is a compressed representation of the
same data at the full 40 MHz collision rate. This second,
lightweight representation is the basis for trigger decisions,
with a compression factor of O(400), ensuring parity be-
tween the bandwidth of each stream. The critical task is to
achieve this reduction in O(100 ns) with minimal impact on
downstream physics algorithms.

This task is common to many detector systems and directly
relevant to a host of on-device compression tasks for com-
plex sensor data. The scenario considers the CMS high-
granularity endcap calorimeter (HGCal), comprised of 6M
channels, each capturing a 5d (position, energy and time)
image of showering high-energy particles. HGCal is com-
prised of layers of hexagonal arrays, with a single particle
depositing energy into hundreds of individual sensors. Data
from each hexagonal array is compressed in an application-
specific integrated circuit (ASIC), with the encoded repre-
sentation transmitted off-detector and subsequently used to
recover the initial detector image as in Figure 3. A data-
driven approach is required to tune the parameters of the
compress and decompress algorithms to minimize differ-
ences between the original and decoded images.

Dataset Compression of the trigger data is accomplished
in multiple steps. First, nearest-neighbors within each hexag-
onal array are aggregated to form a set of 48 “trigger cells”

CURRENT & FUTURE BENCHMARKS

▸ Particle jet classification for level-1 
trigger: ~1 μs latency

Type Benchmark
Input Pipeline Real-time

Misc. Req.
Baseline Model

Precision Rate Latency Parameters

Supervised Learning Jet Classification 16b 150 ns 1µs - 4,389
Unsupervised Learning Sensor Data Compression 9b 25 ns 100 ns area, power (65 nm) 2,288
Reinforcement Learning Beam Control 32b 5 ms 5 ms - 34,695

Table 2. Summary of constraints for three benchmark tasks and number of parameters for the benchmark baseline models.

Baseline Model(s) There are two models involved in this
benchmark task: (1) the surrogate model for the Booster
accelerator and (2) the online agent, which is correcting the
reference magnet power supplies in real-time. The surrogate
model is fixed in this benchmark task and plays the role of
the environment in this reinforcement learning task. The
long short-term memory (LSTM) (Hochreiter & Schmidhu-
ber, 1997) surrogate model inputs are the previous 150-time
steps of the top 5 causal variables—variables related to
the synchrotron and downstream accelerator currents and
current errors concerning reference. The model has approxi-
mately 1.5 million parameters.

The benchmark online agent running in the Arria10 system-
on-chip (SoC) is a multilayer perceptron taking the five
input parameters, has three hidden layers and approximately
35,000 parameters. The deep Q-network (Mnih et al., 2013;
2015) has 7 discrete outputs and maximizes the reward, R,
which is the negative of the error concerning the reference
current in the Booster, R = �|�Imin|. The benchmark
model weights and biases are quantized to 20 total bits in a
fixed-point representation in hardware.

Real-time System Constraints The Booster ramping cy-
cle rate is 15 Hz, which sets the control loop’s time scale.
We define the algorithm latency requirement as 5 ms for this
benchmark due to data movement latency.

Performance Metrics The primary performance metric
in this reference benchmark is the reward, R, described
above.

4 DISCUSSION AND OUTLOOK

This position paper highlights both the need and challenges
for developing machine learning (ML) benchmarks for edge
applications in science. Given the demise of Moore’s law
and Dennard scaling (Dennard et al., 1974; Esmaeilzadeh
et al., 2011) and advances in scientific instrumentation re-
sulting in rapidly growing data rates, edge computing is
becoming exceedingly crucial for reducing and filtering
scientific data in real-time to accelerate science experimen-
tation and enable more profound insights. There are chal-
lenges in building well-constrained benchmark tasks with
enough specification to be generically applicable and ac-
cessible simultaneously. However, we can use these edge
applications in extreme data processing environments to ad-

vance many scientific domains and enable the development
of state-of-the-art tools.

In devising scientific ML edge benchmarks tasks, we aim to
cover machine learning and embedded system techniques.
We choose three applications that span supervised, unsuper-
vised, and reinforcement learning. The system constraints
also span a wide range of latency requirements—from hun-
dreds of nanoseconds to milliseconds where technologies
vary from ASIC to FPGA to more relaxed constraints with
the freedom to choose system architecture. Finally, there is
also a variation in input data representations from expert-
level inputs to image data, point cloud data, and time-series
data. A summary of the proposed scientific edge ML bench-
marks are presented in Table 2 including the input, latency,
and pipeline interval constraints of the benchmark appli-
cations. In (Muhizi & Duarte, 2022), we also present a
prototype code repository for these benchmarks.

5 CONCLUSION

In this work, we present an initial set of scientific machine
learning benchmarks that are specifically geared towards
real-time scientific edge machine learning needs. Our goal is
to first and foremost identify and provide a suite of datasets
and a code repository for these various edge ML tasks. We
will collect and document different solutions and, based on
interest, extend this work. In particular, there is potential
to provide more domain applications such as for astronomy,
neuroscience, and microscopy that could attract a broader
set of use-cases.
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Figure 3. Schematic of the compress-transmit-decompress pipeline
for the HGCal trigger data stream.

with energies represented as a custom 7b float. These 48⇥7b
floating-point inputs are converted to 22b integers, summed,
and finally normalized to obtain 8b fixed-point trigger cell
data. The sum is preserved as a 9b float for transmission.
The benchmark task begins from this point, which must
capture this 48 ⇥ 8 = 384b representation in a budget
of either 144 or 48 bits, for the moderate—and extreme—
compression variants, respectively.

Baseline Model A convolutional neutral network (CNN)
auto-encoder architecture is used to perform the compress-
and-decompress task. Normalized sensor data is re-arranged
and fed to a CNN with one convolutional and one dense
layer with 6b weights, leading to a maximum of 16⇥9b
outputs, saturating the 144b bandwidth (Di Guglielmo et al.,
2021). Data is decompressed by a second CNN with in-
verted architecture, whose outputs are multiplied by the
energy sum to recover the original input image.

The compression logic is implemented in an “encoder ASIC”
using a low-power CMOS process with 65 nm feature size.
The total latency for this circuit is 25 ns and is estimated to
draw 60mW in simulation.

Real-time System Constraints The encoder must accept
new inputs at 40 MHz input rate and complete processing
within 100 ns. Furthermore, we must consider protection
against single-event effects due to the high-radiation envi-
ronment of the on-detector readout. As a rough first order
guideline, on a low-power CMOS 65 nm technology node,
the algorithm area must not be greater than 4 mm2 while
drawing less than 100 mW.

Performance Metrics Performance is assessed by directly
comparing the individual energies of each decoded array
of hexagonal sensors (i.e. 48 trigger cells) to the origi-
nal image of normalized inputs. The energy mover’s dis-
tance (Komiske et al., 2019) is used to compare the re-
constructed radiation patterns, giving smaller penalties for
mis-reconstructed energies that are close-by to the original
deposit.
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Figure 4. Synchrotron magnet power supply control system for the
Fermilab Booster Ring, adapted from (St. John et al., 2021)

3.4 Reinforcement Learning: Beam Control

Intense and energetic particle beams are used for various
applications, from materials discovery to studying nuclear
matter to fundamental particle physics, and even cancer ther-
apy. Controlling precise particle beams, such as those at the
Department of Energy User Facilities, requires intelligent
algorithms running at the edge in low-latency, real-time sys-
tems to steer particles traversing miles of beamline at nearly
the speed of light.

A dataset has been developed (Kafkes & St John, 2021) for
studying how to control the bending magnet ramping rate
of power supplies (St. John et al., 2021) in the rapidly cy-
cling Booster synchrotron ring (Hubbard et al., 1973) at the
Fermilab Accelerator Complex. This is illustrated diagram-
matically in Figure 4. The power supply control signals are
provided at 15 Hz. This beam controls application can be
framed as a reinforcement learning benchmark task. Be-
cause an accurate and reliable simulation of the synchrotron
is not possible from first principles, a “virtual” accelerator
complex surrogate model has been developed to emulate
the actual physical system. This surrogate model will serve
as the environment with which our reinforcement learning
benchmark interacts.

Dataset A Booster synchrotron power supply regulation
dataset provides cycle-by-cycle time series of readings and
settings from the most relevant devices available in the Fer-
milab control system. This data was drawn from the time
series of a select subset of the roughly 200,000 entries that
populate the device database of the accelerator control net-
work. Data was sampled at 15 Hz for 54 devices pertaining
to the system’s regulation. Because of how data is trans-
mitted and communicated, inputs are 32-bit floating-point
numbers, but the sensor source’s precision is, in many cases,
less.

CURRENT & FUTURE BENCHMARKS

▸ Particle jet classification for level-1 
trigger: ~1 μs latency

▸ Sensor data compression: ~100 ns 
latency and additional area/power 
requirements

Type Benchmark
Input Pipeline Real-time

Misc. Req.
Baseline Model

Precision Rate Latency Parameters

Supervised Learning Jet Classification 16b 150 ns 1µs - 4,389
Unsupervised Learning Sensor Data Compression 9b 25 ns 100 ns area, power (65 nm) 2,288
Reinforcement Learning Beam Control 32b 5 ms 5 ms - 34,695

Table 2. Summary of constraints for three benchmark tasks and number of parameters for the benchmark baseline models.

Baseline Model(s) There are two models involved in this
benchmark task: (1) the surrogate model for the Booster
accelerator and (2) the online agent, which is correcting the
reference magnet power supplies in real-time. The surrogate
model is fixed in this benchmark task and plays the role of
the environment in this reinforcement learning task. The
long short-term memory (LSTM) (Hochreiter & Schmidhu-
ber, 1997) surrogate model inputs are the previous 150-time
steps of the top 5 causal variables—variables related to
the synchrotron and downstream accelerator currents and
current errors concerning reference. The model has approxi-
mately 1.5 million parameters.

The benchmark online agent running in the Arria10 system-
on-chip (SoC) is a multilayer perceptron taking the five
input parameters, has three hidden layers and approximately
35,000 parameters. The deep Q-network (Mnih et al., 2013;
2015) has 7 discrete outputs and maximizes the reward, R,
which is the negative of the error concerning the reference
current in the Booster, R = �|�Imin|. The benchmark
model weights and biases are quantized to 20 total bits in a
fixed-point representation in hardware.

Real-time System Constraints The Booster ramping cy-
cle rate is 15 Hz, which sets the control loop’s time scale.
We define the algorithm latency requirement as 5 ms for this
benchmark due to data movement latency.

Performance Metrics The primary performance metric
in this reference benchmark is the reward, R, described
above.

4 DISCUSSION AND OUTLOOK

This position paper highlights both the need and challenges
for developing machine learning (ML) benchmarks for edge
applications in science. Given the demise of Moore’s law
and Dennard scaling (Dennard et al., 1974; Esmaeilzadeh
et al., 2011) and advances in scientific instrumentation re-
sulting in rapidly growing data rates, edge computing is
becoming exceedingly crucial for reducing and filtering
scientific data in real-time to accelerate science experimen-
tation and enable more profound insights. There are chal-
lenges in building well-constrained benchmark tasks with
enough specification to be generically applicable and ac-
cessible simultaneously. However, we can use these edge
applications in extreme data processing environments to ad-

vance many scientific domains and enable the development
of state-of-the-art tools.

In devising scientific ML edge benchmarks tasks, we aim to
cover machine learning and embedded system techniques.
We choose three applications that span supervised, unsuper-
vised, and reinforcement learning. The system constraints
also span a wide range of latency requirements—from hun-
dreds of nanoseconds to milliseconds where technologies
vary from ASIC to FPGA to more relaxed constraints with
the freedom to choose system architecture. Finally, there is
also a variation in input data representations from expert-
level inputs to image data, point cloud data, and time-series
data. A summary of the proposed scientific edge ML bench-
marks are presented in Table 2 including the input, latency,
and pipeline interval constraints of the benchmark appli-
cations. In (Muhizi & Duarte, 2022), we also present a
prototype code repository for these benchmarks.

5 CONCLUSION

In this work, we present an initial set of scientific machine
learning benchmarks that are specifically geared towards
real-time scientific edge machine learning needs. Our goal is
to first and foremost identify and provide a suite of datasets
and a code repository for these various edge ML tasks. We
will collect and document different solutions and, based on
interest, extend this work. In particular, there is potential
to provide more domain applications such as for astronomy,
neuroscience, and microscopy that could attract a broader
set of use-cases.
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Figure 3. Schematic of the compress-transmit-decompress pipeline
for the HGCal trigger data stream.

with energies represented as a custom 7b float. These 48⇥7b
floating-point inputs are converted to 22b integers, summed,
and finally normalized to obtain 8b fixed-point trigger cell
data. The sum is preserved as a 9b float for transmission.
The benchmark task begins from this point, which must
capture this 48 ⇥ 8 = 384b representation in a budget
of either 144 or 48 bits, for the moderate—and extreme—
compression variants, respectively.

Baseline Model A convolutional neutral network (CNN)
auto-encoder architecture is used to perform the compress-
and-decompress task. Normalized sensor data is re-arranged
and fed to a CNN with one convolutional and one dense
layer with 6b weights, leading to a maximum of 16⇥9b
outputs, saturating the 144b bandwidth (Di Guglielmo et al.,
2021). Data is decompressed by a second CNN with in-
verted architecture, whose outputs are multiplied by the
energy sum to recover the original input image.

The compression logic is implemented in an “encoder ASIC”
using a low-power CMOS process with 65 nm feature size.
The total latency for this circuit is 25 ns and is estimated to
draw 60mW in simulation.

Real-time System Constraints The encoder must accept
new inputs at 40 MHz input rate and complete processing
within 100 ns. Furthermore, we must consider protection
against single-event effects due to the high-radiation envi-
ronment of the on-detector readout. As a rough first order
guideline, on a low-power CMOS 65 nm technology node,
the algorithm area must not be greater than 4 mm2 while
drawing less than 100 mW.

Performance Metrics Performance is assessed by directly
comparing the individual energies of each decoded array
of hexagonal sensors (i.e. 48 trigger cells) to the origi-
nal image of normalized inputs. The energy mover’s dis-
tance (Komiske et al., 2019) is used to compare the re-
constructed radiation patterns, giving smaller penalties for
mis-reconstructed energies that are close-by to the original
deposit.
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Figure 4. Synchrotron magnet power supply control system for the
Fermilab Booster Ring, adapted from (St. John et al., 2021)

3.4 Reinforcement Learning: Beam Control

Intense and energetic particle beams are used for various
applications, from materials discovery to studying nuclear
matter to fundamental particle physics, and even cancer ther-
apy. Controlling precise particle beams, such as those at the
Department of Energy User Facilities, requires intelligent
algorithms running at the edge in low-latency, real-time sys-
tems to steer particles traversing miles of beamline at nearly
the speed of light.

A dataset has been developed (Kafkes & St John, 2021) for
studying how to control the bending magnet ramping rate
of power supplies (St. John et al., 2021) in the rapidly cy-
cling Booster synchrotron ring (Hubbard et al., 1973) at the
Fermilab Accelerator Complex. This is illustrated diagram-
matically in Figure 4. The power supply control signals are
provided at 15 Hz. This beam controls application can be
framed as a reinforcement learning benchmark task. Be-
cause an accurate and reliable simulation of the synchrotron
is not possible from first principles, a “virtual” accelerator
complex surrogate model has been developed to emulate
the actual physical system. This surrogate model will serve
as the environment with which our reinforcement learning
benchmark interacts.

Dataset A Booster synchrotron power supply regulation
dataset provides cycle-by-cycle time series of readings and
settings from the most relevant devices available in the Fer-
milab control system. This data was drawn from the time
series of a select subset of the roughly 200,000 entries that
populate the device database of the accelerator control net-
work. Data was sampled at 15 Hz for 54 devices pertaining
to the system’s regulation. Because of how data is trans-
mitted and communicated, inputs are 32-bit floating-point
numbers, but the sensor source’s precision is, in many cases,
less.

CURRENT & FUTURE BENCHMARKS

▸ Particle jet classification for level-1 
trigger: ~1 μs latency

▸ Sensor data compression: ~100 ns 
latency and additional area/power 
requirements

▸ Reinforcement learning for steering 
accelerator beams:  ~5 ms latency

Type Benchmark
Input Pipeline Real-time

Misc. Req.
Baseline Model

Precision Rate Latency Parameters

Supervised Learning Jet Classification 16b 150 ns 1µs - 4,389
Unsupervised Learning Sensor Data Compression 9b 25 ns 100 ns area, power (65 nm) 2,288
Reinforcement Learning Beam Control 32b 5 ms 5 ms - 34,695

Table 2. Summary of constraints for three benchmark tasks and number of parameters for the benchmark baseline models.

Baseline Model(s) There are two models involved in this
benchmark task: (1) the surrogate model for the Booster
accelerator and (2) the online agent, which is correcting the
reference magnet power supplies in real-time. The surrogate
model is fixed in this benchmark task and plays the role of
the environment in this reinforcement learning task. The
long short-term memory (LSTM) (Hochreiter & Schmidhu-
ber, 1997) surrogate model inputs are the previous 150-time
steps of the top 5 causal variables—variables related to
the synchrotron and downstream accelerator currents and
current errors concerning reference. The model has approxi-
mately 1.5 million parameters.

The benchmark online agent running in the Arria10 system-
on-chip (SoC) is a multilayer perceptron taking the five
input parameters, has three hidden layers and approximately
35,000 parameters. The deep Q-network (Mnih et al., 2013;
2015) has 7 discrete outputs and maximizes the reward, R,
which is the negative of the error concerning the reference
current in the Booster, R = �|�Imin|. The benchmark
model weights and biases are quantized to 20 total bits in a
fixed-point representation in hardware.

Real-time System Constraints The Booster ramping cy-
cle rate is 15 Hz, which sets the control loop’s time scale.
We define the algorithm latency requirement as 5 ms for this
benchmark due to data movement latency.

Performance Metrics The primary performance metric
in this reference benchmark is the reward, R, described
above.

4 DISCUSSION AND OUTLOOK

This position paper highlights both the need and challenges
for developing machine learning (ML) benchmarks for edge
applications in science. Given the demise of Moore’s law
and Dennard scaling (Dennard et al., 1974; Esmaeilzadeh
et al., 2011) and advances in scientific instrumentation re-
sulting in rapidly growing data rates, edge computing is
becoming exceedingly crucial for reducing and filtering
scientific data in real-time to accelerate science experimen-
tation and enable more profound insights. There are chal-
lenges in building well-constrained benchmark tasks with
enough specification to be generically applicable and ac-
cessible simultaneously. However, we can use these edge
applications in extreme data processing environments to ad-

vance many scientific domains and enable the development
of state-of-the-art tools.

In devising scientific ML edge benchmarks tasks, we aim to
cover machine learning and embedded system techniques.
We choose three applications that span supervised, unsuper-
vised, and reinforcement learning. The system constraints
also span a wide range of latency requirements—from hun-
dreds of nanoseconds to milliseconds where technologies
vary from ASIC to FPGA to more relaxed constraints with
the freedom to choose system architecture. Finally, there is
also a variation in input data representations from expert-
level inputs to image data, point cloud data, and time-series
data. A summary of the proposed scientific edge ML bench-
marks are presented in Table 2 including the input, latency,
and pipeline interval constraints of the benchmark appli-
cations. In (Muhizi & Duarte, 2022), we also present a
prototype code repository for these benchmarks.

5 CONCLUSION

In this work, we present an initial set of scientific machine
learning benchmarks that are specifically geared towards
real-time scientific edge machine learning needs. Our goal is
to first and foremost identify and provide a suite of datasets
and a code repository for these various edge ML tasks. We
will collect and document different solutions and, based on
interest, extend this work. In particular, there is potential
to provide more domain applications such as for astronomy,
neuroscience, and microscopy that could attract a broader
set of use-cases.
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CURRENT & FUTURE BENCHMARKS

▸ Particle jet classification for level-1 
trigger: ~1 μs latency

▸ Sensor data compression: ~100 ns 
latency and additional area/power 
requirements

▸ Reinforcement learning for steering 
accelerator beams:  ~5 ms latency

▸ Future: Time sequence analysis for 
gravitational wave or neural data, and 
more?

Type Benchmark
Input Pipeline Real-time

Misc. Req.
Baseline Model

Precision Rate Latency Parameters

Supervised Learning Jet Classification 16b 150 ns 1µs - 4,389
Unsupervised Learning Sensor Data Compression 9b 25 ns 100 ns area, power (65 nm) 2,288
Reinforcement Learning Beam Control 32b 5 ms 5 ms - 34,695

Table 2. Summary of constraints for three benchmark tasks and number of parameters for the benchmark baseline models.

Baseline Model(s) There are two models involved in this
benchmark task: (1) the surrogate model for the Booster
accelerator and (2) the online agent, which is correcting the
reference magnet power supplies in real-time. The surrogate
model is fixed in this benchmark task and plays the role of
the environment in this reinforcement learning task. The
long short-term memory (LSTM) (Hochreiter & Schmidhu-
ber, 1997) surrogate model inputs are the previous 150-time
steps of the top 5 causal variables—variables related to
the synchrotron and downstream accelerator currents and
current errors concerning reference. The model has approxi-
mately 1.5 million parameters.

The benchmark online agent running in the Arria10 system-
on-chip (SoC) is a multilayer perceptron taking the five
input parameters, has three hidden layers and approximately
35,000 parameters. The deep Q-network (Mnih et al., 2013;
2015) has 7 discrete outputs and maximizes the reward, R,
which is the negative of the error concerning the reference
current in the Booster, R = �|�Imin|. The benchmark
model weights and biases are quantized to 20 total bits in a
fixed-point representation in hardware.

Real-time System Constraints The Booster ramping cy-
cle rate is 15 Hz, which sets the control loop’s time scale.
We define the algorithm latency requirement as 5 ms for this
benchmark due to data movement latency.

Performance Metrics The primary performance metric
in this reference benchmark is the reward, R, described
above.

4 DISCUSSION AND OUTLOOK

This position paper highlights both the need and challenges
for developing machine learning (ML) benchmarks for edge
applications in science. Given the demise of Moore’s law
and Dennard scaling (Dennard et al., 1974; Esmaeilzadeh
et al., 2011) and advances in scientific instrumentation re-
sulting in rapidly growing data rates, edge computing is
becoming exceedingly crucial for reducing and filtering
scientific data in real-time to accelerate science experimen-
tation and enable more profound insights. There are chal-
lenges in building well-constrained benchmark tasks with
enough specification to be generically applicable and ac-
cessible simultaneously. However, we can use these edge
applications in extreme data processing environments to ad-

vance many scientific domains and enable the development
of state-of-the-art tools.

In devising scientific ML edge benchmarks tasks, we aim to
cover machine learning and embedded system techniques.
We choose three applications that span supervised, unsuper-
vised, and reinforcement learning. The system constraints
also span a wide range of latency requirements—from hun-
dreds of nanoseconds to milliseconds where technologies
vary from ASIC to FPGA to more relaxed constraints with
the freedom to choose system architecture. Finally, there is
also a variation in input data representations from expert-
level inputs to image data, point cloud data, and time-series
data. A summary of the proposed scientific edge ML bench-
marks are presented in Table 2 including the input, latency,
and pipeline interval constraints of the benchmark appli-
cations. In (Muhizi & Duarte, 2022), we also present a
prototype code repository for these benchmarks.

5 CONCLUSION

In this work, we present an initial set of scientific machine
learning benchmarks that are specifically geared towards
real-time scientific edge machine learning needs. Our goal is
to first and foremost identify and provide a suite of datasets
and a code repository for these various edge ML tasks. We
will collect and document different solutions and, based on
interest, extend this work. In particular, there is potential
to provide more domain applications such as for astronomy,
neuroscience, and microscopy that could attract a broader
set of use-cases.
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